DOI QR코드

DOI QR Code

Observation of Growth Inhibition of Elsinoe fawcettii on Satsuma Mandarin Leaves Pre-treated with Rhizobacterial Strains by a Scanning Electron Microscope

식물근권세균을 처리한 감귤 잎에서 주사전자현미경을 통한 감귤 더뎅이병균의 생장 억제 관찰

  • Park, Jae Sin (Major of Plant Resources & Environment, College of Applied Life Sciences, Jeju National University) ;
  • Song, Min-A (Major of Plant Resources & Environment, College of Applied Life Sciences, Jeju National University) ;
  • Jeun, Yong Chull (Major of Plant Resources & Environment, College of Applied Life Sciences, Jeju National University)
  • Received : 2015.09.08
  • Accepted : 2016.01.02
  • Published : 2016.03.31

Abstract

Elsinoe fawcettii causing citrus scab was suppressed by rhizobacterial strains such as Burkholderia gladioli MRL408-3, TRH423-3 and Pseudomonas fluorescens THJ609-3, TRH415-2 having antifungal activity. The leaf surface of Satsuma mandarin, which was pre-treated with the rhizobacterial strains, was observed by a scanning electron microscope (SEM) after inoculation with E. fawcettii. The number of lesions was reduced on the leaves pre-treated with the rhizobacterial strains compared to those of untreated leaves. Especially, the lesions numbers was apparently reduced on the leaves pre-treated with B. gladioli MRL408-3. The observation by SEM revealed that not only the germination rate but also the length of germ tube of the pathogen were decreased on the rhizobacterial strains pre-treated leaves. These inhibition of the fungal growth was more strongly expressed on the leaves pre-treated with commercial fungicide imibenconazole, by which the lesions was rarely found on the leaves. Based on these results, it was suggested that rhizobacterial strains may inhibit the germination and growth of the E. fawcettii on the surface of citrus leaves, resulting in decrease of disease severity.

감귤 더뎅이병을 일으키는 E. fawcettii에 항균효과가 있는 식물근권세균 B. gladioli MRL408-3, TRH423-3, P. fluorescens THJ609-3, TRH415-2에 의해 감귤 더뎅이병이 감소하였다. 이들 식물근권세균을 전 처리한 Satsuma mandarin 감귤 잎에 감귤 더뎅이병균을 접종한 후 주사전자현미경을 이용하여 관찰하였다. 식물근권세균을 전 처리한 잎에서 무처리한 잎에 비해 감귤 더뎅이병의 병반수가 감소되었다. 특히 B. gladioli MRL408-3 균주를 전 처리한 식물에서 감귤 더뎅이병의 병반수가 뚜렷하게 억제되었다. 주사전자현미경을 통해 관찰 결과 식물근권세균을 전 처리한 감귤 잎 표면에서 병원균의 발아율과 발아관의 길이가 감소되는 것을 확인하였다. 시판 농약인 imibenconazole을 처리한 잎에서 감귤 더뎅이병균의 성장이 가장 뚜렷하게 억제되었는데, 이는 병반수가 가장 적게 형성된 것과 상통한다. 이들 결과를 통하여 식물근권세균에 의해 감귤 잎 표면에서 감귤 더뎅이병균의 발아와 생장이 억제되고 그 결과 감귤 더뎅이병의 발생이 감소되는 것으로 판단된다.

Keywords

References

  1. Bae, Y. S., Park, K. S. and Choi, O. H. 2007. Laboratory culture media-dependent biocontrol ablity of Burkholdria gladioli strain B543. Plant Pathol. J. 23: 161-165. https://doi.org/10.5423/PPJ.2007.23.3.161
  2. Beneduzi, A., Ambrosini, A. and Passaglia, L. M. P. 2012. Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet. Mol. Biol. 35(4 Suppl): 1044-1051. https://doi.org/10.1590/S1415-47572012000600020
  3. Bolwerk, A., Lagopodi, A. L., Wijfjes, A. H., Lamers, G. E., Chin-A-Woeng, T. F., Lugtenberg, B. J. and Bloemberg, G. V. 2003. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant Microbe Interact. 16: 983-993. https://doi.org/10.1094/MPMI.2003.16.11.983
  4. Cho, J. I., Cho, J. Y., Park, Y. S., Yang, S. Y. and Heo, B. G. 2007. Selection and identification of actinomyces, and its biological control effect against the bacterial blossom blight infected in kiwifruits. Korean J. Hortic. Sci. Technol. 25: 235-240.
  5. David, M. W. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  6. de Weert, S., Kuiper, I., Lagendijk, E. L., Lamers, G. E. and Lugtenberg, B. J. 2004. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol. Plant Microbe Interact. 17: 1185-1191. https://doi.org/10.1094/MPMI.2004.17.11.1185
  7. Elad, Y. and Kapat, A. 1999. The role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 105: 177-189. https://doi.org/10.1023/A:1008753629207
  8. Hayat, M. A. 1989. Principles and Techniques of Electron Microscopy: Biologacal Applications. 3rd ed. The Macmillan Press, Boca Raton, FL, USA. 1-78 pp.
  9. Hyun, J. W., Timmer, L. W., Lee, S. C., Yun, S. H., Ko, S. W. and Kim, K. S. 2001. Pathological characterization and molecular analysis of Elsinoe isolates causing scab diseases of citrus in Jeju isolates in Korea. Plant Dis. 85: 1013-1017. https://doi.org/10.1094/PDIS.2001.85.9.1013
  10. Kamilova, F., Lamers, G. and Lugtenberg, B. 2008. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores. Environ. Microbiol. 10: 2455-2461. https://doi.org/10.1111/j.1462-2920.2008.01638.x
  11. Kang, S. Y. and Jeun, Y. C. 2012. Suppression effect of white rot by bacterial isolates from plant rhizosphere in garlic plants. Korean J. Organic Agri. 28: 25-32. (In Korean)
  12. Kim, S. G., Zakaullah, K., Jeon, Y. H. and Kim, Y. H. 2009. Inhibitory effect of Paenibacillus polymyxa GBR-462 on Phytophthora capsici causing phytophthora blight in chili pepper. J. Phytopathol. 157: 329-337. https://doi.org/10.1111/j.1439-0434.2008.01490.x
  13. Kim, S. Y., Hyun, J. W. and Jeun, Y. C. 2011. Suppression effect and mechanism of citrus scab in the citrus pre-inoculated with rhizobacterial strains. Res. Plant Dis. 17: 302-310. (In Korean) https://doi.org/10.5423/RPD.2011.17.3.302
  14. Kim, Y. K., Hong, S. J., Shim, C. K., Kim, M. J., Choi, E. J., Lee, M. H., Park, J. H., Han, E. J., An, N. H. and Jee, H. J. 2012. Functional analysis of Bacillus subtilis isolates and biological control of red pepper powdery mildew using Bacillus subtilis R2-1. Res. Plant Dis. 18: 201-209. (In Korean) https://doi.org/10.5423/RPD.2012.18.3.201
  15. Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266. https://doi.org/10.1094/PHYTO.2004.94.11.1259
  16. Ko, Y. J., Kang, S. Y. and Jeun, Y. C. 2012. Suppression of citrus melanose on the leaves treated with rhizobacterial strains after inoculation with Diaporthe citri. Res. Plant Dis. 18: 331-337. https://doi.org/10.5423/RPD.2012.18.4.331
  17. Lahlali, R., Peng, G., McGregor, L., Gossen, B. D., Hwang, S. F. and McDonald, M. 2011. Mechanisms of the biofungicide Serenade (Bacillus subtilis QST713) in suppressing clubroot. Biocontrol Sci. Technol. 21: 1351-1362. https://doi.org/10.1080/09583157.2011.618263
  18. Manjula, K., Krishna Kishore, G., Girish, A. G. and Singh, S. D. 2004. Combined application of Pseudomonas fluorescens and Trichoderma viride has an improved biocontrol activity against stem rot in groundnut. Plant Pathol. J. 20: 75-80. https://doi.org/10.5423/PPJ.2004.20.1.075
  19. Nam, M. H., Choi, J. P., Kim, H. J., Lee, J. J., Lim, K. H., Kim, Y. G., Kim, H. T. and Jeun, Y. C. 2010. Controlling activity of Bacillus subtilis KB-401 against cucumber powdery mildew caused by Sphaerotheca fusca. Korean J. Pestic. Sci. 14: 49-53.
  20. Park, K. S. 2000. Biological control of vegetable diseases by rhizocbacteria. Korean J. Organic Agri. 6: 93-105.
  21. Raaijmakers, J. M., Weller, D. M. and Thomashow, L. S. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881-887.
  22. Rangarajan, S., Saleena, L. M., Vasudevan, P. and Nair, S. 2003. Biological suppression of rice disease by Pseudomonas spp. under saline soil conditions. Plant Soil 251: 73-82. https://doi.org/10.1023/A:1022950811520
  23. Raupach, G. S. and Kloepper, J. W. 1998. Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88: 1158-1164. https://doi.org/10.1094/PHYTO.1998.88.11.1158
  24. Song, M., Yun, H. Y. and Kim, Y. H. 2014. Antagonistic Bacillus species as a biological control of ginseng root rot caused by Fusarium cf. incarnatum. J. Ginseng Res. 38: 136-145. https://doi.org/10.1016/j.jgr.2013.11.016
  25. Tian, S. P., Fan, Q., Xu, Y. and Jiang, A. L. 2002. Effects of calcium on biocontrol activity of yeast antagonists against the postharvest fungal pathogen Rhizopus stolonifer. Plant Pathol. 51: 352-358. https://doi.org/10.1046/j.1365-3059.2002.00711.x
  26. Timmer, L. W., Priest, M., Broadbent, P. and Tan, M.-K. 1996. Morphological and pathological characterization of species of Elsinoe causing scab diseases of citrus. Phytopathology 86: 1032-1038. https://doi.org/10.1094/Phyto-86-1032
  27. Validov, S. Z., Kamilova, F. and Lugtenberg, B. J. J. 2009. Pseudomonas putida strain PCL1760 controls tomato foot and root rot in stonewool under industrial conditions in a certified greenhouse. Biol. Control 48: 6-11. https://doi.org/10.1016/j.biocontrol.2008.09.010
  28. Weller, D. M. 1988. Biological control of soilborn plant pathogens in the rhizosphere with bacteria. Ann. Rev. Phytopathol. 26: 379-407. https://doi.org/10.1146/annurev.py.26.090188.002115
  29. Wisniewski, M., Droby, S., Chalutz, E. and Eilam, Y. 1995. Effects of Ca2+ and Mg2+ on Botrytis cinerea and Penicillium expansum in vitro and on the biocontrol activity of Candida oleophila. Plant Pathol. 44: 1016-1024. https://doi.org/10.1111/j.1365-3059.1995.tb02660.x
  30. Yang, J. S., Kang, S. Y. and Jeun Y. J. 2014. Suppression of citrus canker by pretreatment with rhizobacterial strains showing antibacterial activity. Res. Plant Dis. 20: 101-106. (In Korean) https://doi.org/10.5423/RPD.2014.20.2.101