• 제목/요약/키워드: Prototype Actuator

검색결과 131건 처리시간 0.029초

Autonomous hardware development for impedance-based structural health monitoring

  • Grisso, Benjamin L.;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.305-318
    • /
    • 2008
  • The development of a digital signal processor based prototype is described in relation to continuing efforts for realizing a fully self-contained active sensor system utilizing impedance-based structural health monitoring. The impedance method utilizes a piezoelectric material bonded to the structure under observation to act as both an actuator and sensor. By monitoring the electrical impedance of the piezoelectric material, insights into the health of the structured can be inferred. The active sensing system detailed in this paper interrogates a structure utilizing a self-sensing actuator and a low cost impedance method. Here, all the data processing, storage, and analysis is performed at the sensor location. A wireless transmitter is used to communicate the current status of the structure. With this new low cost, field deployable impedance analyzer, reliance on traditional expensive, bulky, and power consuming impedance analyzers is no longer necessary. A complete power analysis of the prototype is performed to determine the validity of power harvesting being utilized for self-containment of the hardware. Experimental validation of the prototype on a representative structure is also performed and compared to traditional methods of damage detection.

축방향 베어링 통합 회전 구동기의 개발 (Development of Rotary Actuator Including Function of Axial Bearing)

  • 허진혁;정광석;백윤수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1083-1086
    • /
    • 2003
  • Recently, the study on bearingless motors which integrate both motor and magnetic bearing function in one stator is very active, as many machines have high rotational speed, high precision, smaller size and lighter weight. In this paper, we propose a novel rotary actuator including function of axial bearing using Lorentz force as a preceding research for development of a bearingless motor. As using Lorentz force, this type has some merits such as the linearity of control force, freedom from flux saturation and high efficiency unlike conventional rotary actuators using a reluctance force. This type is cotrolled independently in levitation and rotational directions respectively. It shows by mathematical expression of levitation force and torque in the proposed rotary actuator. And also, the levitation force is generated by magnetic interaction between the magnetic materials and the rotational torque is generated by Lorentz force. Finally. for verification of this proposed system, a prototype is made and some experiments will be performed in the near future.

  • PDF

EHA(Electro-Hydrostatic Actuator) 위치제어 시스템의 모델링 및 제어 (Identification and Control of Position Control System for Electro-Hydraulic Actuator (EHA))

  • 박용호;박성환
    • 동력기계공학회지
    • /
    • 제15권2호
    • /
    • pp.69-77
    • /
    • 2011
  • In this paper, an optimal PID sliding mode controller is proposed for the position control of electro-hydrostatic actuator(ERA) systems with system uncertainties and saturation in the motor. An ERA prototype is developed and system modeling and parameter identification are executed. Then, optimal PID and optimal anti-windup PID controller are designed based on identified system model by using optimization toolbox in MA TLAB/Simulink and the performance of the two control systems are compared by experiment. It was found that the optimal anti-windup PID control system has better performance than the optimal anti-windup PID control system.

압전소자를 이용한 정밀 액츄에이터의 구동특성 평가 (Evaluation on the Driving Characteristics of a Precise Actuator Using Piezoelectric Elements)

  • Kim, S.C.;Kim, S.H.;Kwak, Y.K.
    • 한국정밀공학회지
    • /
    • 제12권12호
    • /
    • pp.45-52
    • /
    • 1995
  • A prototype of a linear piezoelectric actuator is developed and its dynamic behaviors are investigated. The actuator consists of a driving tip with two stacked piezoelectric elements and a slider. Dynamic characteristics of slider over various vibration lici of the driving tip and changes of normal force acting on the vibratory tip are examined through experiments. The moving direction of slider can be controlled by changing a phase angle between input signals applied to piezoelectric elements. A change of phase difference between input signals also have a great influence on the vibration locus of driving tip. Changes of slider motion due to different vibration loci are examined by experiments.

  • PDF

인치웜모터를 이용한 마이크로 프레스용 고정밀 구동기의 개발 (Development of High Precision Actuator for Micro Press System by Inchworm Motor)

  • 최종필;남권선;이해진;이낙규;김병희
    • 한국공작기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.137-143
    • /
    • 2009
  • This paper presents the fabrication of inchworm motor for high precision actuator system of large displacement and high force. The inchworm motor consists of a extend actuator that provides displacement of tool guide and two clamping actuators which provide the holding force. In order to avoid the PZT fracture, design of pre-load housing was conducted by flexure hinge structure, because PZT actuator has low tensile and shear. To design the pre-load housing and optimize the clamping mechanism, the static and dynamic analysis were conducted by finite element method. From these results, a prototype of the inchworm motor was fabricated and dynamic characteristic with respect to the various frequency was tested. The maximum velocity of the inchworm motor was $41.1{\mu}m/s$ at 16Hz.

생체모방 물갈퀴형 IPMC 구동기 설계 (Biomimetic Design of IPMC Actuator having Webfoot Form)

  • 김선기;김온아;이승엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1558-1562
    • /
    • 2008
  • Ionic polymer metal composite (IPMC), one of Electro- Active Polymer (EAP) actuators, has great attention due to the low-voltage driven, large deformation and its potential for artificial muscles. In this paper, we firstly review fish swimming modes using various propulsion mechanisms. Based on study on the swimming mechanisms, we develop an underwater robot actuator which mimics fanning motion of webfoot form. It consists of four actuators fabricated by using IPMC and PDMS which mimics Bio-inspired motion Experiments using a prototype show that the webfooted IPMC actuator generates large deformation and propulsion.

  • PDF

캠 구조를 가지는 초소형 자동초점 모듈 설계 (Design of a Slim-Type Auto-Focusing Module with a Cam Structure)

  • 김경호;이승엽;신부현;김수경
    • 정보저장시스템학회논문집
    • /
    • 제5권1호
    • /
    • pp.1-7
    • /
    • 2009
  • Recently, the growing market demand for small and slim mobile phone cameras requires the size reduction of the camera module. In this paper, an auto-focusing actuator for camera phones is proposed by converting the rotational motion by a rotary VCM actuator into the linear motion using a novel cam structure. This new concept for auto-focusing module enables the reduction of the module thickness and low power consumption. This paper presents the theoretical analysis and optimal design for VCM actuator, cam structure and preload spring. Finally, the experimental results using a prototype with the size of $9.9{\times}9.9{\times}5.9\;mm^3$ are compared with the theoretical predictions.

  • PDF

영구자석 스프링과 보이스 코일 구동기를 가진 직선형 진동모터의 설계 및 해석 (Design and Analysis of Linear Vibration Motor Equipped with Permanent-Magnet Springs and Voice-Coil Actuators)

  • 최정규;유승열;노명규
    • 대한기계학회논문집A
    • /
    • 제37권3호
    • /
    • pp.359-364
    • /
    • 2013
  • 직선형 진동모터가 휴대전화의 알림용이나 햅틱 인터페이스의 구동기로 적용되려면 빠른 응답속도와 긴 수명을 제공하여야 한다. 본 논문에서는 기존 직선형 진동모터를 개선하여 보이스 코일 구동기와 영구자석 스프링을 이용한 직선형 진동모터를 제시하고, 설계 제작하여 그 가능성을 검증하였다. Halbach 배열의 영구자석에 의해 구동되는 보이스 코일 구동기와 영구자석 간의 반발력을 이용하는 영구자석 스프링을 해석하고 설계하기 위해, 등가전류판 방법과 이미지 방법을 사용하였고, 방법의 적절성을 유한요소해석을 통해 검증하였다. 시작품 모터를 설계하고 제작하고, 실험을 통해 진동모터의 특성을 확인하였다.

카메라폰용 슬림형 액츄에이터 설계 (Design of a slim piezoelectric actuator for mobile phone camera)

  • 이승환;김경호;김정윤;이승엽;김수경
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.488-491
    • /
    • 2006
  • In this paper, a slim type actuator is proposed rising a bimorph PZT and a circular rotor link. The bimorph contacts the circular rotor, and its displacement generates the rotational motion of the rotor. The rotor causes the linear motion of AF and zoom lens through gear and a motion guide. The proposed model enables the actuations of many lens groups for zoom module by extending the single lens model. The important design parameter is the contact force determined by the frictional coefficient and preload between the rotor and PZT bimorph. A prototype of the single actuator model is manufactured and experiments results using LDV and tachometer are compared to the theoretical and numerical predictions. Experiments show the linear bimorph actuator model meets the performance criteria of the lens actuation, and it can be applicable to various slim type actuators for AF and zoom motions in mobile cameras.

  • PDF

Long Range and High Axial Load Capacity Nanopositioner Using Single Piezoelectric Actuator and Translating Supports

  • Juluri, Bala Krishna;Lin, Wu;Lim, Lennie E N
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권4호
    • /
    • pp.3-9
    • /
    • 2007
  • Existing long range piezoelectric motors with friction based transmission mechanisms are limited by the axial load capacity. To overcome this problem, a new linear piezoelectric motor using one piezoelectric actuator combined with a novel stepping mechanism is reported in this paper. To obtain both long range and fine accuracy, dual positioning control strategy consisting of coarse positioning and fine positioning is used. Coarse positioning is used for long travel range by accumulating motion steps obtained by piezoelectric actuator. This is followed by fine positioning where required accuracy is obtained by fine motion displacement of piezoelectric actuator. This prototype is able to provide resolution of 20 nanometers and withstand a maximum axial load of 300N. At maximum load condition, the positioner can move forward to a travel distance of 5mm at a maximum speed of 0.4 mm/sec. This design of nanopositioner can be used in applications for ultra precision positioning and grinding operations where high axial force capacity is required.