• 제목/요약/키워드: Proton exchange membrane fuel cell

검색결과 431건 처리시간 0.029초

고분자 전해질 연료전지의 전해질 막 두께가 내구성과 성능에 미치는 영향 (The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell)

  • 황병찬;이혜리;박권필
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.473-477
    • /
    • 2017
  • 고분자 전해질 연료전지(PEMFC)의 고분자 막은 PEMFC 성능과 내구성에 많은 영향을 준다. 본 연구에서는 고분자막의 두께가 성능과 내구성에 미치는 영향을 파악하기 위해 두께가 다른 Nafion 막의 수소투과도, 불소 유출 속도(FER), 수명, 성능을 측정했다. 막 두께에 따른 수소투과도, 수소투과도와 FER과의 관계, FER과 수명과의 관계로부터 막 두께와 수명의 관계를 얻었다. 막이 두꺼워지면 수소투과도와 FER이 작아지면서 수명이 증가하였다. 반면에 막이 두꺼워지면 막 저항이 증가하면서 성능은 감소하였다. 성능과 내구성을 동시에 만족시키는 막 두께 범위는 $25{\sim}28{\mu}m$였다.

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar;K.A Subramanian
    • Advances in Energy Research
    • /
    • 제8권4호
    • /
    • pp.253-264
    • /
    • 2022
  • This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

Polymer Materials for Polymer Electrolyte Fuel Cells: Sulfonated Poly(ether sulfone)s for Fuel Cell Membranes

  • Kim, H.J.;Lee, S.Y.;Cho, E.;Ha, H.Y.;Oh, I.H.;Lim, T.H.
    • 한국고분자학회:학술대회논문집
    • /
    • 한국고분자학회 2006년도 IUPAC International Symposium on Advanced Polymers for Emerging Technologies
    • /
    • pp.185-185
    • /
    • 2006
  • The performances of proton exchange membrane fuel cell (PEMFC), direct formic acid fuel cell (DFAFC) and direct methanol fuel cell (DMFC) with sulfonated poly(ether sulfone) membrane are reported. Pt/C was coated on the membrane directly to fabricate a MEA for PEMFC operation. A single cell test was carried out using $H_2/air$ gases as fuel and oxidant. A current density of $730\;mA/cm^2$ at 0.60 V was obtained at $70^{\circ}C$. Pt-Ru (anode) and Pt (cathode) were coated on the membrane for DMFC operations. It produced $83\;mW/cm^2$ of maximum power density. The sulfonated poly(ether sulfone) membrane was also used for DFAFC operation under several different conditions. It showed good cell performances for several different kinds of polymer electrolyte fuel cell applications.

  • PDF

화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가 (Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application)

  • 성승화;이보련;최욱;김태현
    • 멤브레인
    • /
    • 제29권3호
    • /
    • pp.173-182
    • /
    • 2019
  • 화석연료 사용이 증가하면서 온실가스 및 대기오염가스 등의 환경오염 문제가 심각해졌다. 이를 해결하기 위한 신재생에너지, 친환경적인 대체에너지원을 찾기 위한 많은 연구가 이뤄지고 있다. 연료전지는 전기에너지를 발생하며 부산물로 물만이 생성되는 친환경 에너지 발생장치다. 특히, 전해질로 음이온 교환막을 사용하는 음이온 교환막 연료전지(Anion Exchange Membrane Fuel Cell)는 높은 촉매의 활성으로 양이온 교환막 연료전지(Proton Exchange Membrane Fuel cell)와 다르게 저가의 금속 촉매를 사용할 수 있는 장점 때문에 관심이 높아지고 있다. 음이온 교환막으로써 요구되는 주요 특성은 높은 이온($OH^-$) 전도도 및 높은 pH의 구동조건에서의 안정성이다. 본 연구에서는 PPO계 고분자의 화학적 가교 반응을 이용해 얻어진 가교형 고분자 막의 낮은 기계적인 특성과 치수 안정성을 높이기 위해 보다 높은 분자량을 갖는 고분자 사용과 함께 가교율 증대를 통해 보다 높은 이온 전도도와 기계적인 성질, 높은 화학적인 안정성뿐만 아니라 실제 연료전지 구동조건에서 높은 셀 성능을 갖는 AEMFC용 고분자 전해질 막을 개발했다.

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • 제14권1호
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells

  • Lee Jin Hwa;Won Jongok;Oh In Hwan;Ha Heung Yong;Cho Eun Ae;Kang Yong Soo
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.101-106
    • /
    • 2006
  • The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials

  • Kim, Dae Sik;Park, Ho Bum;Nam, Sang Young;Rhim, Ji Won;Lee, Young Moo
    • Korean Membrane Journal
    • /
    • 제6권1호
    • /
    • pp.44-54
    • /
    • 2004
  • Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.

고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구 (A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell)

  • 양종원;최장군;조한익;박종진;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.

Systematic Analysis for the Effects of Atmospheric Pollutants in Cathode Feed on the Performance of Proton Exchange Membrane Fuel Cells

  • Yoon, Young-Gon;Choi, Insoo;Lee, Chang-Ha;Han, Jonghee;Kim, Hyoung-Juhn;Cho, EunAe;Yoo, Sung Jong;Nam, Suk Woo;Lim, Tae-Hoon;Yoon, Jong Jin;Park, Sehkyu;Jang, Jong Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3475-3481
    • /
    • 2014
  • This paper describes how primary contaminants in ambient air affect the performance of the cathode in fuel cell electric vehicle applications. The effect of four atmospheric pollutants ($SO_2$, $NH_3$, $NO_2$, and CO) on cathode performance was investigated by air impurity injection and recovery test under load. Electrochemical analysis via polarization and electrochemical impedance spectroscopy was performed for various concentrations of contaminants during the impurity test in order to determine the origins of performance decay. The variation in cell voltage derived empirically in this study and data reported in the literature were normalized and juxtaposed to elucidate the relationship between impurity concentration and performance. Mechanisms of cathode degradation by air impurities were discussed in light of the findings.