DOI QR코드

DOI QR Code

Analysis of activation, ohmic, and concentration losses in hydrogen fuelled PEM fuel cell

  • Rohan Kumar (Department of Energy Science and Engineering, Indian Institute of Technology Delhi) ;
  • K.A Subramanian (Department of Energy Science and Engineering, Indian Institute of Technology Delhi)
  • Received : 2022.08.17
  • Accepted : 2022.09.07
  • Published : 2022.12.25

Abstract

This paper deals with the effects of design (active area, current density, membrane conductivity) and operating parameters (temperature, relative humidity) on the performance of hydrogen-fuelled proton exchange membrane (PEM) fuel cell. The design parameter of a PEM fuel cell with the active area of the single cell considered in this study is 25 cm2 (5 × 5). The operating voltage and current density of the fuel cell were 0.7 V and 0.5 A/cm2 respectively. The variations of activation voltage, ohmic voltage, and concentration voltage with respect to current density are analyzed in detail. The membrane conductivity with variable relative humidity is also analyzed. The results show that the maximum activation overpotential of the fuel cell was 0.4358 V at 0.21 A/cm2 due to slow reaction kinetics. The calculated ohmic and concentrated overpotential in the fuel cell was 0.01395 V at 0.76 A/cm2 and 0.027 V at 1.46 A/cm2 respectively.

Keywords

References

  1. Amphlett, J.C., Baumert, R.M., Mann, R.F., Peppley, B.A., Roberge, P.R. and Harris, T.J. (1995), "Performance modeling of the ballard mark IV solid polymer electrolyte fuel cell: II. empirical model development", J. Electrochem. Soc., 142(1), 9-15. https://doi.org/10.1149/1.2043959. 
  2. Benmouiza, K. Cheknane, A. (2018), "Analysis of proton exchange membrane fuel cells voltage drops for different operating parameters", Int. J. Hydrogen Energ., 43(6), 3512-3519. https://doi.org/10.1016/j.ijhydene.2017.06.082. 
  3. Chavan, S.L. and Talange, D.B. (2017), "Modeling and performance evaluation of PEM fuel cell by controlling its input parameters", Energy, 138, 437-445. https://doi.org/10.1016/j.energy.2017.07.070. 
  4. Daud, W.R.W., Octavia, S. and Ulfah, M. (2018), "The relative humidity effect of the reactants flows into the cell to increase PEM fuel cell performance", MATEC Web Conf., 156, 1-7. https://doi.org/10.1051/matecconf/201815603033. 
  5. Elia, G.D. (2015), "Characterization of voltage loss for proton exchange membrane fuel cell", 1.
  6. Guvelioglu, G.H. and Stenger, H.G (2007), "Flow rate and humidification effects on a PEM fuel cell performance and operation", J. Power Sources, 163(2), 882-891. https://doi.org/10.1016/j.jpowsour.2006.09.052. 
  7. Haji, S. (2011), "Analytical modeling of PEM fuel cell i-V curve", Renew. Energ., 36(2), 451-458. https://doi.org/10.1016/j.renene.2010.07.007. 
  8. Hong, P., Xu, L., Li, J. and Ouyang, M. (2017), "Modeling of the membrane electrode assembly of PEM fuel cell to analyze voltage losses inside", Energy, 139, 277-288. https://doi.org/10.1016/j.energy.2017.07.163. 
  9. Lin, B. (1999), "Conceptual design and modeling of a fuel cell scooter for urban Asia", Princeton University, Master's Thesis. 
  10. Liu, Y., Bai, S., Wei, P., Pei, P., Yao, S. and Sun, H. (2020), "Numerical and experimental investigation of the asymmetric humidification and dynamic temperature in proton exchange membrane fuel cell", Fuel Cells, 20(1), 48-59. https://doi.org/10.1002/fuce.201900140. 
  11. O'hayre, R., Cha, S.W., Colella, W. and Prinz, F.B. (2016), Fuel cell fundamentals, John Wiley & Sons. 
  12. Ozen, D.N., Timurkutluk, B. and Altinisik, K. (2016), "Effects of operation temperature and reactant gas humidity levels on performance of PEM fuel cells", Renew. Sust. Energ. Rev., 59, 1298-1306. https://doi.org/10.1016/j.rser.2016.01.040. 
  13. Spiegel, C. (2011), "PEM fuel cell modeling and simulation using MATLAB", Elsevier.