DOI QR코드

DOI QR Code

Development of Anion Exchange Membrane based on Crosslinked Poly(2,6-dimethyl-1,4-phenylene oxide) for Alkaline Fuel Cell Application

화학적 가교를 이용한 Poly(2,6-dimethyl-1,4-phenylene oxde)계 음이온 교환막의 제조 및 알칼리 연료전지용 특성평가

  • Sung, Seounghwa (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Lee, Boryeon (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University) ;
  • Choi, Ook (Research Institute of Basic Sciences, Incheon National University) ;
  • Kim, Tae-Hyun (Organic Material Synthesis Laboratory, Department of Chemistry, Incheon National University)
  • Received : 2019.06.21
  • Accepted : 2019.06.27
  • Published : 2019.06.30

Abstract

Much research has been made for finding new and eco-friendly alternative sources of energy to solve the problems related with the pollution caused by emissions of greenhouse gases such as carbon dioxide as the use of fossil fuels increases worldwide. Among them, fuel cells draws particular interests as an eco-friendly energy generator because only water is obtained as a by-product. Anion exchange membrane-based alkaline fuel cell (AEMFC) that uses anion exchange membrane as an electrolyte is of increased interest recently because of its advantages in using low-cost metal catalyst unlike the PEMFC (potton exchange membrane fuel cell) due to the high-catalyst activity in alkaline conditions. The main properties required as an anion exchange membrane are high hydroxide conductivity and chemical stability at high pH. Recently we reported a chemically crosslinked poly(2-dimethyl-1,4-phenylene oxide) (PPO) by reacting PPO with N,N,N',N'-tetramethyl-1,6-hexanediamine as novel anion exchange membranes. In the current work, we further developed the same crosslinked polymer but having enhanced physicochemical properties, including higher conductivity, increased mechanical and dimensional stabilities by using the PPO with a higher molecular weight and also by increasing the crosslinking density. The obtained polymer membrane also showed a good cell performance.

화석연료 사용이 증가하면서 온실가스 및 대기오염가스 등의 환경오염 문제가 심각해졌다. 이를 해결하기 위한 신재생에너지, 친환경적인 대체에너지원을 찾기 위한 많은 연구가 이뤄지고 있다. 연료전지는 전기에너지를 발생하며 부산물로 물만이 생성되는 친환경 에너지 발생장치다. 특히, 전해질로 음이온 교환막을 사용하는 음이온 교환막 연료전지(Anion Exchange Membrane Fuel Cell)는 높은 촉매의 활성으로 양이온 교환막 연료전지(Proton Exchange Membrane Fuel cell)와 다르게 저가의 금속 촉매를 사용할 수 있는 장점 때문에 관심이 높아지고 있다. 음이온 교환막으로써 요구되는 주요 특성은 높은 이온($OH^-$) 전도도 및 높은 pH의 구동조건에서의 안정성이다. 본 연구에서는 PPO계 고분자의 화학적 가교 반응을 이용해 얻어진 가교형 고분자 막의 낮은 기계적인 특성과 치수 안정성을 높이기 위해 보다 높은 분자량을 갖는 고분자 사용과 함께 가교율 증대를 통해 보다 높은 이온 전도도와 기계적인 성질, 높은 화학적인 안정성뿐만 아니라 실제 연료전지 구동조건에서 높은 셀 성능을 갖는 AEMFC용 고분자 전해질 막을 개발했다.

Keywords

References

  1. J.-E. Son, "Hydrogen & fuel cell technology", Korean Chem. Eng. Res., 42, 1 (2004).
  2. M. I. Ahmad, S. M. J. Zaidi, and S. U. Rahman, "Proton conductivity and characterization of novel composite membranes for medium-temperature fuel cells", Desalination, 193, 387 (2006). https://doi.org/10.1016/j.desal.2005.06.069
  3. B. Bae, E. Kim, S. Lee, and H. Lee, "Research trends of anion exchange membranes within alkaline fuel cells", New & Renewable Energy, 11, 52 (2015). https://doi.org/10.7849/ksnre.2015.12.11.4.52
  4. J. R. Varcoe, P. Atanassov, D. R. Dekel, A. M. Herring, M. A. Hickner, P. A. Kohl, A. R. Kucernak, W. E. Mustain, K. Nijmeijer, K. Scott, T. Xu, and L. Zhuang, "Anion-exchange membranes in electrochemical energy systems", Energy Environ. Sci., 7, 3135 (2014). https://doi.org/10.1039/C4EE01303D
  5. G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, "Polymeric materials as anion-exchange membranes for alkaline fuel cells", Prog. Polym. Sci., 36, 1521 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
  6. G. Merle, M. Wessling, and K. J. Nijmeijer, "Anion exchange membranes for alkaline fuel cells: A review", Membr. Sci., 377, 1 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
  7. Y. Zha, M. L. Disabb-Miller, Z. D. Johnson, M. A. Hickner, and G. N. Tew, "Metal-cation-based anion exchange membranes", J. Am. Chem. Soc., 134, 4493 (2012). https://doi.org/10.1021/ja211365r
  8. O. D. Thomas, K. J. W. Y. Soo, T. J. Peckham, M. P. Kulkarni, and S. Holdcroft, "A stable hydroxide- conducting polymer", J. Am. Chem. Soc., 134, 10753 (2012). https://doi.org/10.1021/ja303067t
  9. Y.-K. Choe, C. Fujimoto, K.-S. Lee, L. T. Dalton, K. Ayers, N. J. Henson, and Y. S. Kim, "Alkaline stability of benzyl trimethyl ammonium functionalized Preparationized polyaromatics: A computational and experimental study", Chem. Mater., 26, 5675 (2014). https://doi.org/10.1021/cm502422h
  10. Y. Yang and D. M. Knauss, "Poly(2,6-dimethyl-1,4-phenylene oxide) b poly(vinylbenzyltrimethylammonium) diblock copolymers for highly conductive anion exchange membranes", Macromolecules, 48, 4471 (2015). https://doi.org/10.1021/acs.macromol.5b00459
  11. H.-S. Dang and P. Jannasch, "Alkali-stable and highly anion conducting poly(phenylene oxide)s carrying quaternary piperidinium cations", J. Mater. Chem. A, 4, 11924 (2016). https://doi.org/10.1039/C6TA01905F
  12. M. R. Hibbs, C. H. Fujimoto, and C. J. Cornelius "Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells", Macromolecules, 42, 8316 (2009). https://doi.org/10.1021/ma901538c
  13. A. D. Mohanty, C. Y. Ryu, Y. S. Kim, and C. S. Bae, "Stable elastomeric anion exchange membranes based on quaternary ammonium-tethered polystyrene b poly(ethylene-cobutylene) b polystyrene triblock copolymers", Macromolecules, 48, 7085 (2015). https://doi.org/10.1021/acs.macromol.5b01382
  14. C. X. Lin, X. Q. Wang, E. N. Hu, Q. Yang, Q. G. Zhang, A. M. Zhu, and Q. L. Liu, "Quaternized triblock polymer anion exchange membranes with enhanced alkaline stability", J. Membr. Sci., 541, 358 (2017). https://doi.org/10.1016/j.memsci.2017.07.032
  15. A. D. Monhanty and C. S. Bae, "Mechanistic analysis of ammonium cation stability for alkaline exchange membrane fuel cells", J. Mater. Chem. A, 2, 17314 (2014). https://doi.org/10.1039/C4TA03300K
  16. H. R. Lim and T. H. Kim, "Preparation and characterization of anion exchange membrane based on crosslinked poly(2,6-dimethyl-1,4-phenylene oxide) with spacer-type conducting group", Mem. Journal, 27(5), 425 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.425
  17. D. R. Dekel, M. Amar, S. Willdorf, M. Kosa, S. Dhara, and C. E. Diesendruck, "Effect of water on the stability of quaternary ammonium groups for anion exchange membrane fuel cell applications", Chem. Mater., 29, 4425 (2017). https://doi.org/10.1021/acs.chemmater.7b00958