Browse > Article

Synthesis and Characterization of Sulfonated Poly(phthalazinone ether sulfone)(sPPES)/Silica Membrane for Proton Exchange Membrane Materials  

Kim, Dae Sik (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University)
Park, Ho Bum (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University)
Nam, Sang Young (Department of Polymer Science and Engineering, Gyeongsang National University, Engineering Research Institute)
Rhim, Ji Won (Department of Chemical Engineering Hannam University)
Lee, Young Moo (National Research Laboratory for Membranes, School of Chemical Engineering, College of Engineering, Hanyang University)
Publication Information
Korean Membrane Journal / v.6, no.1, 2004 , pp. 44-54 More about this Journal
Abstract
Organic-inorganic composite membranes based on sulfonated poly(phthalazinone ether sulfone) (sPPES)/silica hybrid were prepared using the sol-gel process under acidic conditions. The sulfonation of PPES with concentrated sulfuric acid as sulfonation agent was carried out to prepare proton exchange membrane material. The behaviors of the proton conductivity and methanol permeability are depended on the sulfonation time (5-100 hr). The hybrid membranes composed of highly sulfonated PPES (IEC value: 1.42 meq./g) and silica were fabricated from different silica content (5-20 wt%) in order to achieve desirable proton conductivity and methanol permeability demanded for fuel cell applications. The silica particles within membranes were used for the purpose of blocking excessive methanol cross-over and for forming the path way to transport of the proton due to absorbing water molecules with ≡SiOH on silica. The presence of silica particles in the organic polymer matrix results in hybrid membranes with reduced methanol permeability and improved proton conductivity.
Keywords
sulfonated poly(phthalazinone ether sulfone); silica; proton conductivity; methanol permeability; hybrid membrane;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Pu, W. Huang, K. L. Ley, and E. S. Smotkin, 'A methanol impermeable proton conducting composite electrolyte system', J. Electrochem. Soc., 142, 119 (1995)
2 G. T. Burstein, C. J. Barnett, A. R. Kucernak, and K. R. Williams, 'Aspects of' the anodic oxidation of methanol', Catal. Today, 38, 425 (1998)
3 R. Nolte, K. Ledjeff, M. Bauer, and R. Mlhaupt, 'Partially sulfonated poly(arylene ether sulfone) a versatile proton conducting membrane material for modem energy conversion technologies', J. Membr. Sci., 83, 211 (1993)   DOI   ScienceOn
4 Y. Dai, X. Jian, X. Liu, and M. D. Guiver, 'Synthesis and characterization of sulfonated poly (phthalazionone ether sulfone ketone) for ultrafiltration and nanofiltration membranes', J. Appl. Polym. Sci., 79, 1685 (2001)
5 G. Yan, P. R. Gilles, M. D. Guiver, and J. Xigao, 'Synthesis and characterization of sulfonated poly (phthalazinone ether ketone) for proton exchange membrane materials', J. Poly. Sci. Part A: Polymer Chemistry, 41, 497 (2003)
6 P. L. Antonucci, A. S. Srico. P. Creti, E. Ramunni, and V. Antonucci, 'Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation', Solid state Ionics, 125, 431 (1999)
7 K. D. Kreuer, 'Proton Conductivity: Materials and Applications', Chem. Mater., 8, 610 (1996)
8 B. S. Jung, B. Y. Kim, and J. M. Yang, 'Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell', in press J. Membr. Sci. (2004)
9 N. A. Hampson, M. J. Wilars, and B. D. McNicol, 'The methanolair fuel cell: a selective review of methanol oxidation mechanisms at platinum electrodes in acid electrolytes', J. Power Sources, 4, 191 (1979)
10 J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I. H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, 'Structural characterization and surface modification of sulfonated polystyrene(ethylenebutylene) styrene triblock proton exchange membranes', J. Membr. Sci., 214, 245 (2003)
11 C. Ma, L. Zhang, S. Mukerjee, D. Ofer, and B. Nair, 'An investigation of proton conduction in select PEM's and reaction layer interfaces design for elevated temperature operation', J. Membr. Sci., 218, 123 (2003)
12 A. Noshay and L. M. Robeson, 'Sulfonated polysulfone', J Appl. Polym. Sci., 20, 1885 (1976)
13 M. Ueda, H. Toyota, T. Ouchi, J. I. Sugiyama, K. Yonetake, T. Masuko, and T. Teramoyo, 'Synthesis and characterization of aromatic poly(ether sulfone) s containing pendant sodium sulfonate groups', J. Polym. Sci. Part A: Polym. Chem., 31, 853 (1993)
14 D. S. Kim, K. H. Shin, H. B. Park, and Y. M. Lee, 'Preparation and characterization of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK)/Silica hybrid membranes for direct methanol fuel cell application', Macromolecular Research, 12 413 (2004)
15 R. P. Hamlen, 'Membrane for hydrogen and methanol fuel cell', US Patent 5849428 (1998)
16 X. Ren, M. S. Wilson, and S. Gottesfel, 'High performance direct methanol polymer electrolyte fuel cells', J. Electrochem. Soc., 143, 12 (1996)
17 A. Kver and W. Vielstich, 'Investigation of methanol crossover and single electrode performance during PEMFC operation: a study using a solid polymer electrolyte membrane fuel system', J. Power Sources, 74, 211 (1998)
18 Z. Plotarzewski, W. Wieczorek, J. Przyluski, and V. Antonucci, 'Novel proton conducting composite electrolytes for application in methanol fuel cells', Solid State Ionics, 119, 301 (1999)
19 L. Jorissen, V. Gogel, J. Kerres, and J. Garche, 'New membranes for direct methanol fuel cells', J. Power Sources, 105, 264 (2002)
20 K. G. Neoh, K. K. Tan, P. L. Goh, S. W. Huang, E. T. Kang, and K. L. Tan, E'lectroactive polymer-$SiO_2$-nanocomposites for metal uptake', Polymer, 40, 887 (1999)
21 F. Wang, T. Chen, and J. Xu, 'Sodium sulfonate-functionalized poly(ether ether ketone)s', Macromol. Chem. Phys., 199, 1421 (1998)
22 H. S. Chao, N. Y. Watervliet, D. S. Kelsey, and N. J. Hillsborough, 'Process for preparing sulfonated poly(aryl ether) resins', US Patent 4,625,000 (1986)
23 D. S. Kim, H. B. Park, and Y. M. Lee, 'Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cell', submitted to J. Polym. Sci. Part A. (2004)
24 G. Yan, P. Gilles, M D. Guiver, J. Xigao, S. D. Mikhailenko, and K. Wang, 'Direct copolymerization of sulfonated poly(phthalazinone arylene ether)s for proton-exchange-membrane materials', J. Poly. Sci. Part A: Polymer Chemistry, 41, 2731 (2003)
25 H. Dohle, German Patent 1980 131C1 (1999)
26 S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, M. D. Guiver, and S. Kaliaguine, 'Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications', J. Membr. Sci., 173, 17 (2000)
27 S. Koter, P. Piotrowski, and J. Kerres, 'Comparative investigations of ion-exchange membranes', J. Membr. Sci., 153, 83 (1999)
28 J. W. Cho and K. I. Sui, 'Characterization and properties of hybrid composites prepared from poly(vinylidene fluoridetetrafluoroethylene) and $SiO_2$', Polymer, 42, 727 (2001)   DOI   ScienceOn
29 A. Bunn and J. B. Rose, 'Sulfonation of poly(phenylene ether sulphone)s containing hydroquinone residues', Polymer, 34, 1114 (1993)
30 X. Guyu, S. Guomin, Y. Deyue, Z. Pinfang, and T. Ping, 'Synthesis of sulfonated poly(phthalazinone ether sulfone)s by direct polymerization', Polymer, 43, 5335 (2002)