Browse > Article

Effects of Polyamidoamine Dendrimers on the Catalytic Layers of a Membrane Electrode Assembly in Fuel Cells  

Lee Jin Hwa (Department of Applied Chemistry, Sejong University)
Won Jongok (Department of Applied Chemistry, Sejong University)
Oh In Hwan (Korea Institute of Science and Technology)
Ha Heung Yong (Korea Institute of Science and Technology)
Cho Eun Ae (Korea Institute of Science and Technology)
Kang Yong Soo (Department of Chemical Engineering, Hanyang University)
Publication Information
Macromolecular Research / v.14, no.1, 2006 , pp. 101-106 More about this Journal
Abstract
The transport of reactant gas, electrons and protons at the three phase interfaces in the catalytic layers of membrane electrode assemblies (MEAs) in proton exchange, membrane fuel cells (PEMFCs) must be optimized to provide efficient transport to and from the electrochemical reactions in the solid polymer electrolyte. The aim of reducing proton transport loss in the catalytic layer by increasing the volume of the conducting medium can be achieved by filling the voids in the layer with small-sized electrolytes, such as dendrimers. Generation 1.5 and 3.5 polyamidoamine (PAMAM) dendrimer electrolytes are well-controlled, nanometer-sized materials with many peripheral ionic exchange, -COOH groups and were used for this purpose in this study. The electrochemically active surface area of the deposited catalyst material was also investigated using cyclic voltammetry, and by analyzing the Pt-H oxidation peak. The performances of the fuel cells with added PAMAM dendrimers were found to be comparable to that of a fuel cell using MEA, although the Pt utilization was reduced by the adsorption of the dendrimers to the catalytic layer.
Keywords
PAMAM dendrimer; MEA; fuel cell; catalytic layer;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003)   DOI   ScienceOn
2 J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003)   DOI   ScienceOn
3 M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem., 22, 1 (1992)   DOI
4 E. P. Barrett, L. G. Joyner, and P. P. Halenda, J. Am. Chem. Soc., 73, 373, (1951)   DOI
5 M. S. Wilson, J. A. Valerio, and S. Gottesfeld, Electrochimica Acta, 40, 355 (1995)   DOI   ScienceOn
6 E. Antolini, J. Appl. Electrochem., 34, 563 (2004)   DOI   ScienceOn
7 J. Won, K. J. Ihn, and Y. S. Kang, Langmuir, 18, 8246 (2002)   DOI   ScienceOn
8 J. Larminie and A Dick, Fuel Cell Systems Explained, B. Lane, Ed., J. Wiley & Sons Ltd, Chichester, West Sussex, PO19 1UD, England, 2000
9 S. A. Lee, K. W. Park, B. K. Kwon, and Y. E. Sung, J. Ind. Eng. Chem., 9, 63 (2003)   DOI
10 C. S. Kim, Y. G. Chun, D. H. Peck, and D. R. Shin, Int. J. Hydrogen Energy, 23, 1045 (1998)   DOI   ScienceOn
11 H. J. Kim, M. H. Litt, S. Y. Nam, and E. M. Shin, Macromol. Res., 11, 458 (2003)   DOI   ScienceOn
12 The value of pKa of SO_3H and COOH were assumed as a sulfuric acid and an acetic acid, respectively
13 E. A. Ticianelli, C. R. Derouin, and S. Srinivasan, J. Electroanal. Chem., 251, 275 (1988)   DOI   ScienceOn
14 M. Uchida, Y, Aoyama, N. Eda, and A. Ohta, J. Electrochem. Soc., 142, 463 (1995)   DOI   ScienceOn
15 S. Srinivasan, E. A. Ticianelli, C. R. Derouin, and A. Redondo, J. Power Sources, 22, 359 (1988)   DOI   ScienceOn
16 S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc.,60, 314 (1938)
17 S. Brunauer, L. S. Deming, W. K. Deming, and E. Teller, J. Am. Chem. Soc., 63, 1724 (1940)   DOI
18 M. Watanabe, M. Tomikawa, and S. Motoo, J. Electroanal. Chem., 195, 81 (1985)   DOI   ScienceOn
19 W. Huang, X. Han, and E. Wang, J. Electrochem. Soc., 150, E218 (2003)   DOI   ScienceOn
20 E. A. Ticianelli, C. R. Derouin, A. Redondo, and S. Srinivasan, J. Electrochem. Soc., 135, 2209 (1988)   DOI   ScienceOn
21 S. Litster and G. McLean, J. Power Sources, 130, 61 (2004)   DOI   ScienceOn
22 S. Brunauer, P. H. Emmett, and E. Teller, J. Am. Chem. Soc., 60, 309 (1938)   DOI
23 S. Brunauer, The Adsorption of Gases and Vapours, Clarendon Press, Oxford, 1945
24 The charge of the hydrogen desorption peak was 70.3 mC/ cm^2. The average diameter of the Pt particles in 20% E-TEK catalyst is about 2 nm, and the density of platinum is 21.4 g cm^-2. Assuming a charge of 0.21 mC cm^-2 for the surface of Pt, from the charge of the hydrogen desorption peak (70.3 mC/cm^2), the electrochemical surface area is calculated to be 47.8 m^2 g^-1. By comparison with the surface area obtained from the platinum particle size, the utilization of Pt particles can be calculated as: (47.8/140)$x$100% = 34.1% in case of reference
25 B. J. Cha, Y. S. Kang, and J. Won, Macromolecules, 34, 6631 (2001)   DOI   ScienceOn
26 U. S. Jeon, E. A. Cho, H.-Y. Ha, S.-A. Hong, and I.-H. Oh, Trans. of the Korea Hydrogen and New Energy Society, 13, 322 (2002)
27 A. J. Appleby, J. Power Sources, 49, 15 (1994)   DOI   ScienceOn