• Title/Summary/Keyword: Proteolytic systems

Search Result 26, Processing Time 0.021 seconds

Roles of Plant Proteases in Pathogen Defense

  • Baek, Kwang-Hyun;Choi, Do-Il
    • The Plant Pathology Journal
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2008
  • The genomes of plants contain more than 600 genes encoding a diverse set of proteases and the subunits of proteasomes. These proteases and proteasomes consist of plant proteolytic systems, which are involved in various cellular metabolic processes. Plant proteolytic systems have been shown to have diverse roles in defense responses, such as execution of the attack on the invading organisms, participation in signaling cascades, and perception of the invaders. In order to provide a framework for illustrating the importance of proteolytic systems in plant defense, characteristics of non-proteasome proteases and the 26S proteasome are summarized. The involvement of caspase-like proteases, saspases, apoplastic proteases, and the 26S proteasome in pathogen defense suggests that plant proteolytic systems are essential for defense and further clarity on the roles of plant proteases in defense is challenging but fundamentally important to understand plant-microbe interactions.

Proteolytic Systems of Lactic Acid Bacteria in Milk Fermentation (유제품 발효에서 유산균의 단백질 가수분해 시스템)

  • Chang, Oun-Ki;Seol, Kuk-Hwan;Kim, Min-Kyung;Han, Gi-Sung;Jeong, Seok-Geun;Oh, Mi-Hwa;Park, Beom-Young;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.119-129
    • /
    • 2012
  • Lactic acid bacteria (LAB) have been used as starter cultures in the manufacturing processes of fermented dairy products such as cheese and yogurt. LAB have a proteolytic system to use the nitrogen source from milk for their growth. The proteolytic system involved in casein utilization provides cells with essential amino acids during growth in milk and is also of industrial importance, because of its contribution to the development of the organoleptic properties such as flavor of fermented milk products. In the most extensively studied LAB, Lactococcus lactis, the main features of the proteolytic system comprise 3 groups. The first is proteinase, which initially cleaves the milk protein to peptides. The second group consists of transport systems for the internalization of oligopeptides, which are involved in the cellular uptake of small peptides and amino acids. The third group, peptidases in the cell, cleaves peptides into smaller peptides and amino acids. This review is to provide the information about the proteolytic system of LAB.

  • PDF

Endogenous Proteolytic Systems and Meat Tenderness: Influence of Post-Mortem Storage and Processing

  • Kaur, Lovedeep;Hui, Seah Xin;Morton, James D.;Kaur, Ramandeep;Chian, Feng Ming;Boland, Mike
    • Food Science of Animal Resources
    • /
    • v.41 no.4
    • /
    • pp.589-607
    • /
    • 2021
  • Meat proteolytic systems play a crucial role in meat tenderisation. Understanding the effects of processing technologies and post-mortem storage conditions on these systems is important due to their crucial role in determining the quality characteristics of meat and meat products. It has recently been proposed that tenderisation occurs due to the synergistic action of numerous endogenous proteolytic systems. There is strong evidence suggesting the importance of μ-calpain during the initial post-mortem aging phase, while m-calpain may have a role during long-term aging. The caspase proteolytic system is also a candidate for cell degradation in the initial stages of conversion of muscle to meat. The role of cathepsins, which are found in the lysosomes, in post-mortem aging is controversial. Lysosomes need to be ruptured, through aging, or other forms of processing to release cathepsins into the cytosol for participation in proteolysis. A combination of optimum storage conditions along with suitable processing may accelerate protease activity within meat, which can potentially lead to improved meat tenderness. Processing technologies such as high pressure, ultrasound, and shockwave processing have been reported to disrupt muscle structure, which can facilitate proteolysis and potentially enhance the aging process. This paper reviews the recent literature on the impacts of processing technologies along with post-mortem storage conditions on the activities of endogenous proteases in meat. The information provided in the review may be helpful in selecting optimum post-mortem meat storage and processing conditions to achieve improved muscle tenderness within shorter aging and cooking times.

Correlation Between Malignant Phenotypes and Changes in Overall Proteolytic Capacity of Human Cervix and Liver Cancer (인체의 자궁암과 간암조직에서의 단백질 분해활성의 변화)

  • Kee, Yun;Park, Sang-Chul;Ha, Doo-Bong;Chung, Chin-Ha
    • The Korean Journal of Zoology
    • /
    • v.32 no.1
    • /
    • pp.48-54
    • /
    • 1989
  • Several proteolytic activities and the level of and-trypsin in neoplastic tissues of human cervix and liver were compared to those in normal tissues to examine if any correlation exists between malignant behavior of the tumors and the changes in overall proteolytic capacity. Proteolysis against casein and insulin in cervix tumor was increased to 2-to 3-fold while that in liver tumor was reduced to one-tenth to one-half. By contrast, the level of anti-trypsin in cervix tumor was lowered to nearly one-tenth of that in normal tissues while the level rose to about 2-fold in malignant tissues of liver. On the other hand, the activities of plasmin-like protease and plasminogen activator were enhanced 10-20% over the activities in normals. These results suggest that the changes in proteolytic capacity are at least in part due to outbalance in either of proteolytic or its inhibitory activity over the other and occur distinctively to each tumor systems for their malignant behavior.

  • PDF

Proteolytic System of Streptococcus thermophilus

  • Rodriguez-Serrano, G.M.;Garcia-Garibay, M.;Cruz-Guerrero, A.E.;Gomez-Ruiz, L.;Ayala-Nino, A.;Castaneda-Ovando, A.;Gonzalez-Olivares, L.G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1581-1588
    • /
    • 2018
  • The growth of lactic acid bacteria (LAB) generates a high number of metabolites related to aromas and flavors in fermented dairy foods. These microbial proteases are involved in protein hydrolysis that produces necessary peptides for their growth and releases different molecules of interest, like bioactive peptides, during their activity. Each genus in particular has its own proteolytic system to hydrolyze the necessary proteins to meet its requirements. This review aims to highlight the differences between the proteolytic systems of Streptococcus thermophilus and other lactic acid bacteria (Lactococcus and Lactobacillus) since they are microorganisms that are frequently used in combination with other LAB in the elaboration of fermented dairy products. Based on genetic studies and in vitro and in vivo tests, the proteolytic system of Streptococcus thermophilus has been divided into three parts: 1) a serine proteinase linked to the cellular wall that is activated in the absence of glutamine and methionine; 2) the transport of peptides and oligopeptides, which are integrated in both the Dpp system and the Ami system, respectively; according to this, it is worth mentioning that the Ami system is able to transport peptides with up to 23 amino acids while the Opp system of Lactococcus or Lactobacillus transports chains with less than 13 amino acids; and finally, 3) peptide hydrolysis by intracellular peptidases, including a group of three exclusive of S. thermophilus capable of releasing either aromatic amino acids or peptides with aromatic amino acids.

Isolation and characterization of a protease deficient mutant of Aspergillus niger

  • Jeong, Hye-Jong;Lee, Mi-Ae;Park, Seung-Mun;Kim, Dae-Hyeok
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.89-92
    • /
    • 2001
  • Aspergillus niger has been used as a host system to express many heterologous proteins. It has various advantages over other expression systems in that it is a small eukaryotic GRAS (Generally Recognized aS Safe) organism with a capacity of secreting large amount of foreign proteins. However, it has been known that the presence of an abundant protease is a limiting factor to express a heterologous protein. The proteases deficient mutants of A. niger were obtained using UV -mutagenesis. A total of 1 ${\times}$ $10^5$ spores were irradiated with 10-20% survival dose of UV, 600J/M2 at 280nm, and the resulting spores were screened on the casein -gelatin plates. Ten putative protease deficient mutants were further analyzed on the starch plates to differentiate the pro from the secretory mutant. An endogenous extracellular enzyme, glucose oxidase, was also examined to confirm that the mutant phenotype was due to the proteases deficiency rather than the mutation in the secretory pathway. The reduced proteolytic activity was measured using SDS-fibrin zymography gel, casein degradation assay, and bio-activity of a supplemented hGM -CSF (human Granulocyte-Macrophage Colony Stimulating Factor). Comparing with the wild type strain, less than 30 % of proteolytic activity was observed in the culture filtrate of the protease deficient mutant (pro -20) without any notable changes in cell growth and secretion.

  • PDF

Post-Translational Regulation of miRNA Pathway Components, AGO1 and HYL1, in Plants

  • Cho, Seok Keun;Ryu, Moon Young;Shah, Pratik;Poulsen, Christian Peter;Yang, Seong Wook
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.581-586
    • /
    • 2016
  • Post-translational modifications (PTMs) of proteins are essential to increase the functional diversity of the proteome. By adding chemical groups to proteins, or degrading entire proteins by phosphorylation, glycosylation, ubiquitination, neddylation, acetylation, lipidation, and proteolysis, the complexity of the proteome increases, and this then influences most biological processes. Although small RNAs are crucial regulatory elements for gene expression in most eukaryotes, PTMs of small RNA microprocessor and RNA silencing components have not been extensively investigated in plants. To date, several studies have shown that the proteolytic regulation of AGOs is important for host-pathogen interactions. DRB4 is regulated by the ubiquitin-proteasome system, and the degradation of HYL1 is modulated by a de-etiolation repressor, COP1, and an unknown cytoplasmic protease. Here, we discuss current findings on the PTMs of microprocessor and RNA silencing components in plants.

CHIP promotes the degradation of mutant SOD1 by reducing its interaction with VCP and S6/S6' subunits of 26S proteasome

  • Choi, Jin-Sun;Lee, Do-Hee
    • Animal cells and systems
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Previously we showed that CHIP, a co-chaperone of Hsp70 and E3 ubiquitin ligase, can promote the degradation of mutant SOD1 linked to familial amyotrophic lateral sclerosis (fALS) via a mechanism not involving SOD1 ubiquitylation. Here we present evidence that CHIP functions in the interaction of mutant SOD1 with 26S proteasomes. Bag-1, a coupling factor between molecular chaperones and the proteasomes, formed a complex with SOD1 in an hsp70-dependent manner but had no direct effect on the degradation of mutant SOD1. Instead, Bag-1 stimulated interaction between CHIP and the proteasome-associated protein VCP (p97), which do not associate normally. Over-expressed CHIP interfered with the association between mutant SOD1 and VCP. Conversely, the binding of CHIP to mutant SOD1 was inhibited by VCP, implying that the chaperone complex and proteolytic machinery are competing for the common substrates. Finally we observed that mutant SOD1 strongly associated with the 19S complex of proteasomes and CHIP over-expression specifically reduced the interaction between S6/S6' ATPase subunits and mutant SOD1. These results suggest that CHIP, together with ubiquitin-binding proteins such as Bag-1 and VCP, promotes the degradation of mutant SOD1 by facilitating its translocation from ATPase subunits of 19S complex to the 20S core particle.

Degradation of Insect Humoral Immune Proteins by the Proteases Secreted from Enterococcus faecalis

  • Park, Shin-Yong;Kim, Koung-Mi;Kim, Ik-Soo;Lee, Sang-Dae;Lee, In-Hee
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.13 no.1
    • /
    • pp.37-43
    • /
    • 2006
  • Enterococcus faecalis was isolated from the body fluid of dead Galleria mellonella larvae. Upon injection of E. faecalis into the hemocoel of G. mellonella, the bacteria destroyed parts of humoral defense systems in the hemolymph. In a test for the proteolytic activity of E. faecalis CS, it was confirmed that the enzyme degraded three well-known a-helical antimicrobial peptides, cecropin A, melittin and halocidin, and abolished their activities. We also determined putative cleavage sites on the primary sequences of three peptides through purification and mass analysis of peptide fragments digested by E. faecalis CS. Furthermore it was found that apolipophorin-III, recently known as a critical recognition protein for invading microbes in the hemolymph of G. mellonella, was also degraded by E. faecalis CS. Taken together, the present work shows that the protease in secretions from E. faecalis destroyed two critical humoral immune factors in the hemolymph of G. mellonella larvae. In addition, this paper demonstrates that the relationship between the host insect and the pathogenic bacteria might provide a valuable model system to study the enterococcal virulence mechanism, which may be relevant to mammalian pathogenesis.

A Comparison of Silk Fibroin Hydrolysates by Hydrochlonic Acis and Proteolytic Enzymes

  • Sh. R. Madyarov;Yeo, Joo-Hong;Lee, Kwang-Gill;Lee, Yong-Woo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 2001
  • Enzymatic hydrolysis of different forms of silk fibroin (soluble, gel and insoluble forms) by industrial and commercial enzyme preparations to obtain aqueous and powdered silk fibroin in relatively mild conditions was investigated. A mono-enzymatic hydrolysate systems were tested for hydrolysis of water-soluble form of fibroin as most productive form of protein substrate. Insoluble forms of substrate usually were hydrolyzed less effective. In some cases from soluble fibroin substrate gel was formed during hydrolysis process. This hindered intermixing and decreased rates of hydrolysis. Insoluble sediments were formed in enzymatic hydrolysates in other cases. These sediments and also sediment after chemical hydrolysis were purified and tested on amino acids content for comparison. Sediments formation in these conditions are considered as pure tyrosine isolation method. Obtained hydrolysates were characterized by gel-chromatography analysis and other standard biochemical methods. Possibility of application of enzymatic hydrolysis for preparation of silk fibroin hydrolysates is discussed.

  • PDF