Browse > Article
http://dx.doi.org/10.4014/jmb.1807.07017

Proteolytic System of Streptococcus thermophilus  

Rodriguez-Serrano, G.M. (Departamento de Biotecnologia Universidad Autonoma Metropolitana-Iztapalapa)
Garcia-Garibay, M. (Departamento de Biotecnologia Universidad Autonoma Metropolitana-Iztapalapa)
Cruz-Guerrero, A.E. (Departamento de Biotecnologia Universidad Autonoma Metropolitana-Iztapalapa)
Gomez-Ruiz, L. (Departamento de Biotecnologia Universidad Autonoma Metropolitana-Iztapalapa)
Ayala-Nino, A. (Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo)
Castaneda-Ovando, A. (Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo)
Gonzalez-Olivares, L.G. (Centro de Investigaciones Quimicas, Universidad Autonoma del Estado de Hidalgo)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.10, 2018 , pp. 1581-1588 More about this Journal
Abstract
The growth of lactic acid bacteria (LAB) generates a high number of metabolites related to aromas and flavors in fermented dairy foods. These microbial proteases are involved in protein hydrolysis that produces necessary peptides for their growth and releases different molecules of interest, like bioactive peptides, during their activity. Each genus in particular has its own proteolytic system to hydrolyze the necessary proteins to meet its requirements. This review aims to highlight the differences between the proteolytic systems of Streptococcus thermophilus and other lactic acid bacteria (Lactococcus and Lactobacillus) since they are microorganisms that are frequently used in combination with other LAB in the elaboration of fermented dairy products. Based on genetic studies and in vitro and in vivo tests, the proteolytic system of Streptococcus thermophilus has been divided into three parts: 1) a serine proteinase linked to the cellular wall that is activated in the absence of glutamine and methionine; 2) the transport of peptides and oligopeptides, which are integrated in both the Dpp system and the Ami system, respectively; according to this, it is worth mentioning that the Ami system is able to transport peptides with up to 23 amino acids while the Opp system of Lactococcus or Lactobacillus transports chains with less than 13 amino acids; and finally, 3) peptide hydrolysis by intracellular peptidases, including a group of three exclusive of S. thermophilus capable of releasing either aromatic amino acids or peptides with aromatic amino acids.
Keywords
Proteolysis; lactic acid bacteria; Streptococcus thermophilus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Niven GW, Hold er SA, Stroman P. 1995. A stud y of the substrate specificity of aminopeptidase N from Lactococcus lactis subsp. cremoris Wg2. Appl. Microbiol. Biotechnol. 44: 100-105.   DOI
2 Chavagnat F, Casey MG, Meyer J. 1999. Purification, characterization, gene cloning, sequencing, and overexpression of aminopeptidase N from Streptococcus thermophilus A. Appl. Environ. Microbiol. 65: 3001-3007.
3 Sieuwerts S, Molenaar D, van Hijum SAFT, Beerthuyzen M, Stevens MJA, Janssen PWM, et al. 2010. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl. Environ. Microbiol. 76: 7775-7784.   DOI
4 Tan PS, van Alen-Boerrigter IJ, Poolman B, Seizen RJ, de Vos WM, Konings WN. 1992. Characterization of the Lactococcus lactis papN gene encoding an aminopeptidase homologous to mammalian aminopeptidase N. FEBS Lett. 306: 9-16.   DOI
5 Klein JR, Klein U, Schad M, Plapp R. 1993. Cloning DNA sequence analysis and partial characterization of pepN a lysis aminopeptidase from Lactobacillus delbrúckii subsp. Lactis DSM7290. Eur. J. Biochem. 217: 105-114   DOI
6 Motoshima H, Shiraishi T, Tsukasaki F, Kaminogawa S. 2003. Purification, characterization and gene cloning of lysil aminopeptidase from Streptococcus thermophilus YRC001. Biosci. Biotechnol. Biochem. 67: 772.782.   DOI
7 Zhang Q, Ren J, Zhao M, Zhao H, Regenstein JM, LiY, Wu J. 2011. Isolation and characterization of three novel peptides from casein hydrolysates that stimulate the growth of mixed cultures of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus. J. Agric. Food Chem. 59: 7045-7053.   DOI
8 Dandoy D, Fremaux C, Henry-Frahan M, Horvath P, Boyaval P, Hols P, et al. 2011. The fast milk acidifying phenotype of Streptococcus thermophilus can be acquired by natural transformation of the genomic island encoding the cell-envelope proteinase PrtS. Microb. Cell Fact. 10: S21   DOI
9 Pritchard GG, Coolbear, T. 1993. The physiology and biochemistry of the proteolytic system in lactic acid bacteria. FEMS Microbiol. Rev. 12: 179-206.   DOI
10 Poolman B, Kunji ERS, Hagting A, Juillard V, Konings WN. 1995. The proteolytic pathway of Lactococcus lactis. Soc. Appl. Bacteriol. Symp. Ser. 24: 65S-75S
11 Motoshima H, Kaminagawa S. 2013. Aminopeptidase T, pp. 1674-1677. In Rawling, DN, Salvesen G (eds.), Handbook of Proteolytic Enzymes, 3rd Ed. Academic Press, California, USA.
12 Fernand ez-Espla MD, Garault P, Monnet V, Rul F. 2000. Streptococcus thermophilus cell anchored proteinase: release, purification and biochemical and genetic characterization. Appl. Environ. Microbiol. 66: 4772-4778.   DOI
13 Chang OK, Roux E, Awussi AA, Miclo L, Jardin J, Jameh N, et al. 2014. Use of a free form of the Streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides Int. Dairy J. 38: 104-115.   DOI
14 Laan H, Konings WN. 1989. The mechanism of proteinase release from Lactococcus lactis subsp. cremoris Wg2. Appl. Environ. Microbiol. 55: 3101-3106
15 Christensen JE, Lin D, Palva A, Steele JL. 1995. Sequence analysis, distribution and expression of an aminopeptidase N-encoding gene from Lactobacillus helveticus CNRZ32. Gene 155: 89-93   DOI
16 Chapot-Chartier MP, Rul F, Nardi M, Gripon JC. 1994. Gene cloning and characterization of PepC, a cysteine aminopeptidase from Streptococcus thermophilus, with sequence similarity to the eukaryotic bleomycin hydrolase. Eur. J. Biochem. 224: 497-506   DOI
17 Fernandez-Espla MD, Rul F. 1999. PepS from Streptococcus thermophilus a new member of the aminopeptidaset family of thermophilic bacteria. Eur. J. Biochem. 263: 502-510.   DOI
18 Liu F, Du L, Du P, Huo G. 2009. Possible promoter regions within the proteolytic system in Streptococcus thermophilus and their interaction with the CodY homolog. FEMS Microbiol. Lett. 297: 164-172.   DOI
19 Simonen M, Palva I. 1993. Protein secretion in Bacillus species. Microbiol. Rev. 57: 109-137.
20 Adda J, Gripon JC, Vassal L. 1982. The chemistry of flavour and texture development in cheese. Food Chem. 9: 115-129.   DOI
21 Dunn HC, Lindsay RC. 1985. Evaluation of the role of microbial Strecker-derived aroma compounds in unclean-type flavours of Cheddar cheese. J. Dairy Sci. 68: 2859-2874.   DOI
22 Lee CW, Desmazeaud MJ. 1985. Utilization of aromatic amino acids as nitrogen sources in Brevibacterium linens: an inducible aromatic amino acid aminotransferase. Arch. Microbiol. 140: 331-337.   DOI
23 Renault PG, Corthier N, Goupil C, Delorme C, Ehrlich SD. 1996. Plasmid vectors from Gram-positive bacteria switching from high low copy number. Gene 12: 175-182.
24 Yamamoto N, Aquino A, Takano T. 1993. Purification and specificity of a cell-wall-associated proteinase from Lactobacillus helveticus CP790. J. Biochem. 114: 740-745.   DOI
25 Shihata A, Shah NP. 2000. Proteolytic profiles of yogurt and probiotic bacteria. Int. Dairy J. 10: 401-408.   DOI
26 Juillard V, Laan H, Kunji ERS, Jeronimus-Stratingh CM, Bruins AP, Konings WN. 1995. The extracellular PI-type proteinase of Lactococcus lactis hydrolyzes $\beta$-casein into more than one hundred different oligopeptides. J. Bacteriol. 12: 3472-3478.
27 Kunji ERS, Hagting A, DeVries CJ, Juillard V, Haandrikman AJ, Poolman B, et al. 1995. Transport of $\beta$-casein-derived peptides by the oligopeptide transport system is a crucial step in the proteolytic pathway of Lactococcus lactis. J. Biol. Chem. 27: 1569-1574.
28 Courti P, Monnet V, Rull F. 2002. Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 148: 3413-3421.   DOI
29 Chang OK, Perrin C, Galia W, Saulnier F, Miclo L, Roux E, et al. 2012. Release of the cell-envelope protease PrtS in the growth medium of Streptococcus thermophilus 4F44. Int. Dairy J. 148: 3413-3421.
30 Somkuti GA, Paul M. 2010. Enzymatic fragmentation of the antimicrobial peptides casocidin and isracidin by Streptococcus thermophilus and Lactobacillus delbrueckii ssp. Bulgaricus. Appl. Microbiol. Biotechnol. 87: 235-242.   DOI
31 Meyer J, Jordi R. 1987. Purification and characterization of X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus lactis and from Streptococcus thermophilus. J. Dairy Sci. 70: 738-745.   DOI
32 Tsakalidou E, Anastasiou R, Papadimitriou K, Manolopoulou E, Kalantzopoulos G. 1997. Purification and characterisation of an intracellular X-prolyl-dipeptidyl aminopeptidase from Streptococcus thermophilus ACA-DC 4. J. Biotechnol. 59: 203-211.
33 Anastasiou R, Papadelli M, Georgalaki MD, Kalantzopoulos G, Tsakalidou E. 2002. Cloning and sequencing of the gene encoding X-prolyl-dipeptidyl aminopeptidase (PepX) from Streptococcus thermophilus strain ACA-DC4. J. Appl. Microbiol. 93: 52-59.   DOI
34 Deutsch SM, Molle D, Gagnaire V, Piot M, Atlan D, Lortal S. 2000. Hydrolysis of sequenced $\beta$-casein peptides provides new insight into peptidase activity from thermophilic lactic acid bacteria and highlights intrinsic resistance of phosphopeptides. Appl. Environ. Microbiol. 12: 5360-5367.
35 Atlan D, Laloi P, Portalier R. 1990. X-prolyl-dipeptidyl aminopeptidase of Lactobacillus delbrueckii subsp. bulgaricus: characterization of the enzyme and isolation of deficient mutants. Appl. Environ. Microbiol. 56: 2174-2179.   DOI
36 Khalid NM, Marth EH. 1990 Purification and characterization of prolyl-dipeptidyl aminopeptidase from Lactobacillus helveticus CNRZ32. Appl. Environ. Microbiol. 56: 381-388.
37 Bockelmann W, Fobker M, Teuber M. 1991 Purification and characterisation of the X-prolyl-dipeptidyl-aminopeptidase from Lactobacillus delbrueckii subsp. bulgaricus and Lactobacillus acidophilus. Int. Dairy J. 1: 51-66.   DOI
38 Rojas-Ronquillo A, Cruz-Guerrero A, Flores-Najera A, Rodriguez-Serrano G, Gomez-Ruiz L, Reyes-Grajeda JP, et al. 2012. Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. Food Biotech. 26: 1-8.   DOI
39 Giannoglou M, Alexandrakis Z, Stavros P, Katsaros G, Katapodis P, Nounesis G, et al, 2018. Effect of high pressure on modifications and enzymatic activity of a purified X-prolyl dipeptidyl aminopeptidase from Streptococcus thermophilus. Food Chem. 248: 304-311.   DOI
40 Savijoki K, Ingmer H, Varmanen P. 2006. Proteolytic systems of lactic acid bacteria. Appl. Microbiol. Biotechnol. 71: 394-406.   DOI
41 Kunji ERS, Mierau I, Hagting A, Poolman B, Konings WN. 1996. The proteolytic system of lactic acid bacteria. Antonie Van Leewenhoek 70: 187-221.   DOI
42 Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. 2010. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 297: 164-172.
43 Thomas S, Besset C, Courtin P, Rul F. 2010. The role of aminopeptidase PepS in the growth of Streptococcus thermophilus is not restricted to nitrogen nutrition. J. Appl. Microbiol. 108: 148-157.   DOI
44 Mukhopadhya A, Noronha N, Bahar B, Ryan BA, Kelly PM, O'Loughlin IB, et al. 2014. Anti-inflammatory effects of a casein hydrolysate and its peptide-enriched fractions on $TNF{\alpha}$-challenged Caco-2 cells and LPS-challenged porcine colonic explants. Food Sci. Nutr. 2:712-723.   DOI
45 Monnet V, Ley JP, Gonzalez S. 1992. Substrate specificity of the cell enveloped-located proteinase of Lactococcus lactis subsp lactis NCDO763. Int. J. Biochem. 24: 707-718.   DOI
46 Delorme C, Bartholini C, Bolotine A, Ehrlich SD, Renault P. 2010. Emergence of a cell wall protease in the Streptococcus thermophilus population. Appl. Environ. Microbiol. 76: 451-460.   DOI
47 Exterkate FA, Alting AC, Bruinenberg PG. 1993. Diversity of cell envelope proteinase specificity among strain of Lactococcus lactis and its relationship to charge characteristics of the substrate-binding region. Appl. Environ. Microbiol. 59: 3640-3647.
48 Hafezz Z, Cakir-Kiefer C, Girardet JM, Lecomte X, Galia W, Dary A, et al. 2015. New insights into the proteolytic system of Streptococcus thermophilus: use of Isracidin to characterize cell-associated extracellular peptidase activities. J. Agric. Food Chem. 63: 7522-7531.   DOI
49 Galia W, Perrin C, Genay M, Dary A. 2009. Variability and molecular typing of Streptococcus thermophilus strains displaying different proteolytic and acidifying properties. Int. Dairy. J. 19: 89-95.   DOI
50 Galia W, Jameh N, Perrin C, Genay M, Dary-Mourot A. 2016. Acquisition of PrtS in Streptococcus thermophilus is not enough in certain strains to achieve rapid milk acidification. Diary Sci. Technol. 96: 623-636.   DOI
51 Monnet C, Mora D, Corrieu G. 2005. Glutamine synthesis is essential for growth of Streptococcus thermophilus in milk and is linked to urea catabolism. Appl. Environ. Microbiol. 71: 3376-3378.   DOI
52 Chavagnat F, Meyer J, Casey MG. 2000. Purification, characterisation, cloning and sequencing of the gene encoding oligopeptidase PepO from Streptococcus thermophilus A. FEMS Microbiol Lett. 191: 79-85.   DOI
53 Gasson MJ, de Vos WM. 1994. The proteolytic system of lactic acid bacteria, pp. 169-210. In Gasson MJ, Vos WM (eds.), Genetics and Biotechnology of Lactic Acid Bacteria, Springer, Netehrlands.
54 Chopin A. 1993. Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol. Rev. 12: 21-37.   DOI
55 Leroy F, DeVuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78.   DOI
56 Letort C, Nardi M, Garault P, Monnet V, Juillard V. 2002. Casein utilization by Streptococcus thermophilus results in a diauxic growth in milk. Appl. Environ. Microbiol. 68: 3162-3165.   DOI
57 Hols P, Hancy F, Fontaine L, Grossiord B, Prozzi D, Leblond-Bourget N, et. al 2005. New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 29: 435-463.
58 Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, et. al 2008. Physiology of Streptococcus thermophilus during the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 8: 4273-4286.   DOI
59 Letort C, Juillard V. 2001. Development of a minimal chemically-defined medium for the exponential growth of Streptococcus thermophilus. J. Appl. Microbiol. 91: 1023-1029   DOI
60 Juille O, Le Bars D, Juillard V. 2005. The specificity of oligopeptide transport by Streptococcus thermophilus resembles that of Lactococcus lactis and not that of pathogenic streptococci. Microbiology 151: 1987-1994.   DOI
61 Heefner DL, Harold FM. 1982. ATP-driven sodium pump in Streptococcus faecalis. Proc. Nati. Acad. Sci. USA 79: 2798-2802.   DOI
62 Tian H, Li B, Evivie SE, Sarker SK, Chowdhury S, Lu J, et al. 2018. Technological and genomic analysis of roles of the cell-envelope protease PrtS in yoghurt starter development. Int. J. Mol. Sci. 19: 1068-1085.   DOI
63 Bassi D, Cappa F, Gazzola S, Orrù L, Cocconcelli PS. 2017. Biofilm formation on stainless steel by Streptococcus thermophilus UC8547 in milk environments is mediated by the proteinase PrtS. Appl. Environ. Microbiol. 83: 1-12.
64 Akpemado KM, Bracquart PA. 1983. Uptake of branched-chain amino acids by Streptococcus thermophilus. Appl. Environ. Microbiol. 45: 136-140.
65 Podbielski A, Bettina ABL. 1998. The group A streptococcal dipeptide permease (Dpp) is involved in the uptake of essential amino acids and affects the expression of cysteine protease. Mol. Microbiol. 28: 1323-1334.   DOI
66 Doeven MK, Kok J, Poolman B. 2005. Specificity and selectivity determinants of peptide transport in Lactococcus lactis and other microorganisms. Mol. Microbiol. 57: 640-649.   DOI
67 Lamarque M, Charbonnel P, Aubel D, Piard JC, Atlan D, Juillard V. 2004. A multifunction ABC transporter (Opt) contributes to diversity of peptide uptake specificity within the genus Lactococcus. J. Bateriol. 186: 6492-6500.
68 Garault P, Le Bars D, Besset C, Monnet V. 2002. Three oligopeptide-binding proteins are involved in the oligopeptide transport of Streptococcus thermophilus. J. Biol. Chem. 4: 32-39.
69 Gardan R, Besset C, Guillot A, Gitton C, Monnet V. 2009.The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. J. Bacteriol. 14: 4647-4655.
70 Gardan R, Besset C, Gitton C, Guillot A, Fontaine L, Hols P, et al. 2013. Extracellular life cycle of ComS, the competence-stimulating peptide of Streptococcus thermophilus. J. Bacteriol. 8: 1845-1855.
71 Rul F, Monnet V. 1997. Presence of additional peptidases in Streptococcus thermophilus CNRZ 302 compared to Lactococcus lactis. J. Appl. Microbiol. 82: 695-704.   DOI
72 Rul F, Monnet V, Gripon JC. 1994. Purification and characterization of a general aminopeptidase (St-PepN) from Streptococcus salivarius subsp. thermophilus CNRZ302. J. Dairy Sci. 77: 2880-2889.   DOI