References
- Agrios, G. N. 2005. Plant Pathology, 5th Ed., Elservier Academic Press, San Diego
- Avrova, A. O., Stewart, H. E., De Jong, W., Heilbronn, J., Lyon, G.D. and Birch, R. R. J. 1999. A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol. Plant Microbe Interact. 12:1114-1119 https://doi.org/10.1094/MPMI.1999.12.12.1114
- Avrova, A. O., Taleb, N., Rokka, V. M., Heilbronn, J., Campbell, E., Hein, I., Gilroy, E. M., Cardle, L., Bradshaw, J. E. and Stewart, H. E. 2004. Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Mol. Plant Pathol. 5:45-56 https://doi.org/10.1111/j.1364-3703.2004.00205.x
- Barrett, A. J., Rawlings, N. D. and Woessner J. F. (eds.). 2004. Handbook of Proteolytic Enzymes, Elservier Academic Press, London
- Becker, J., Kempf, R., Jeblick, W. and Kauss, H. 2000. Induction of competence for elicitation of defense responses in cucumber hypocotyls requires proteasome activity. Plant J. 21:311-316 https://doi.org/10.1046/j.1365-313x.2000.00677.x
- Beers, E. P., Woffenden B. J. and Zhao, C. 2000. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399-415 https://doi.org/10.1023/A:1026556928624
- Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P. and Delledonne, M. 2003. A cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270:2593-2604 https://doi.org/10.1046/j.1432-1033.2003.03630.x
- Bonneau, L., Ge, Y., Drury, G. E. and Gallois, P. 2008. What happened to plant caspases? J. Exp. Bot. 59:491-499 https://doi.org/10.1093/jxb/erm352
- Buchanan, B. B., Gruissem, W. and Jones, R. L. 2002. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, p. 447
- Coffeen, W. C. and Wolpert, T. J. 2004. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857-873 https://doi.org/10.1105/tpc.017947
- Combier, J. P., Vernié, T., De billy, F., El yahyaoui, F., Mathis, R. and Gamas, P. 2007. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol. 144:703-716 https://doi.org/10.1104/pp.106.092585
-
Dahan, J., Etienne, P., Petitot, A. S., Houot, V., Blein, J. P. and Suty, L. 2001. Cryptogein affects expression of
$\alpha$ 3,$\alpha$ 6 and b1 20S proteasome subunits encoding genes in tobacco. J. Exp. Bot. 52:1947-1948 https://doi.org/10.1093/jexbot/52.362.1947 - Delaure, S., Van Hemelrijck, W., De bolle, M., Cammue, B. and De coninck, B. 2008. Building up plant defense by breaking down proteins. Plant Sci. 174:375-385 https://doi.org/10.1016/j.plantsci.2008.01.008
- Devoto, A., Muskett, P. R. and Shirasu, K. 2003. Role of ubiquitination in the regulation of plant defence against pathogens. Curr. Opin. Plant. Biol. 6:307-311 https://doi.org/10.1016/S1369-5266(03)00060-8
- Dreher, K. A. and Callis, J. 2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 9: 787-822
- Ellis, C., Turner, J. G. and Devoto, A. 2002. Protein complexes mediate signalling in plant responses to hormones, light, sucrose and pathogens. Plant Mol. Biol. 50:971-980 https://doi.org/10.1023/A:1021291522243
- El Moussaoui A., Nijs, M., Paul, C., Wintjens, R., Vincentelli, J., Azarkan, M. and Looze, Y. 2001. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol. Life Sci. 58:556-570 https://doi.org/10.1007/PL00000881
- Garcia-Lorenzo, M., Sjödin, A., Jansson, S. and Funk, C. 2006. Protease gene families in Populus and Arabidopsis. BMC Plant Biol. 6:30 https://doi.org/10.1186/1471-2229-6-30
- Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., Lopez, E. C., Borras-Hidalgo, O., Pritchard, L., Loake, G. J., Lacomme, C. and Birch, P. R. 2007. Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J. 52:1-13 https://doi.org/10.1111/j.1365-313X.2007.03226.x
- Glickman, M. H. and Ciechanover, A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:373-428 https://doi.org/10.1152/physrev.00027.2001
- Golldack, D., Popova, O. V. and Dietz, K. J. 2002. Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J. Biol .Chem. 277:5541-5547 https://doi.org/10.1074/jbc.M106197200
- Graham, I. A., Xiong, J. and Gillikin, J. W. 1991. Purification and developmental analysis of a metalloproteinase from the leaves of Glycine max. Plant Physiol. 97:786-792 https://doi.org/10.1104/pp.97.2.786
- Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755-758 https://doi.org/10.1038/nature06782
- Grütter, M. G. 2000. Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10:649-655 https://doi.org/10.1016/S0959-440X(00)00146-9
- Hao, L., Hsiang, T. and Goodwin, P. H. 2006. Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato. Plant Sci. 170:1001-1009 https://doi.org/10.1016/j.plantsci.2006.01.011
- Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2004. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855-858 https://doi.org/10.1126/science.1099859
-
He, R., Drury, G. E., Rotari, V. I., Gordon, A., Willer, M., Tabasum, F., Woltering, E. J. and Gallois, P. 2007. Metacaspase-8 modulates programmed cell death induced by UV and
$H_2O_2$ in Arabidopsis. J. Biol. Chem. 283:774-783 https://doi.org/10.1074/jbc.M704185200 - Hoeberichts, F. A., Ten Have, A. and Woltering, E. J. 2003. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517-522 https://doi.org/10.1007/s00425-003-1049-9
- Jesenberger, V. and Jentsch, S. 2002. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3:112-121 https://doi.org/10.1038/nrm731
- Jones, J. D. G. and Dangle, J. L. 2006. The plant immune system. Nature 444:323-329 https://doi.org/10.1038/nature05286
- Kraft, E., Stone, S. L., Ma, L., Su, N., Gao, Y., Lau, O.-S., Deng, X. W. and Callis, J. 2005. Genome analysis and functional characterization of the E2 and ring domain E3 ligase ubiquitination enzymes of Arabidopsis thaliana. Plant Physiol. 139:1597-1611 https://doi.org/10.1104/pp.105.067983
- Kruger, J., Thomas, C. M., Golstein, C., Dixon, M. S., Smoker, M., Tang, S., Mulder, L. and Jones, J. D. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:744-747 https://doi.org/10.1126/science.1069288
- Kurepa, J. and Smalle, J. A. 2008. Structure, function and regulation of plant proteasomes. Biochimie. 90:324-335 https://doi.org/10.1016/j.biochi.2007.07.019
- Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2005. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J. Biol. Chem. 280:32914-32920 https://doi.org/10.1074/jbc.M504476200
- Lee, S. J., Kelley, B. S., Damasceno, C. M., St John, B., Kim, B. S., Kim, B. D. and Rose, J. K. 2006. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol. Plant Microbe Interact. 19:1368-1377 https://doi.org/10.1094/MPMI-19-1368
- Lequeu, J., Simon-Plas, F., Fromentin, J., Etienne, P., Petitot, A. S., Blein, J. P. and Suty, L. 2005. Proteasome comprising a beta1 inducible subunit acts as a negative regulator of NADPH oxidase during elicitation of plant defense reactions. FEBS Lett. 579:4879-4886 https://doi.org/10.1016/j.febslet.2005.07.073
- Li, J., Brader, G. and Palva, E. T. 2008. Kunitz Trypsin Inhibitor: An antagonist of cell death triggered by phytopathogens and fumonisin B1 in Arabidopsis. Mol. Plant. 1:482-495 https://doi.org/10.1093/mp/ssn013
- Li, Z., Sommer, A., Dingermann, T. and Noe, C. R. 1996. Molecular cloning and sequence analysis of a cDNA encoding a cysteine proteinase inhibitor from sorghum bicolor seedlings. Mol. Gen. Genet. 251:499-502
- Liu, Y., Dammann, C. and Bhattacharyya, M. K. 2001. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol. 127:1788-1797 https://doi.org/10.1104/pp.010593
- Luderer, R., Takken, F. L. W., de Wit, P. J. G. M. and Joosten, M. H. A. J. 2002.Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol. Microbiol. 45: 875-884 https://doi.org/10.1046/j.1365-2958.2002.03060.x
- Madeo, F., Herker, E., Maldener, C. et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell. 9:911-917 https://doi.org/10.1016/S1097-2765(02)00501-4
- Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G. and Clark, I. M. 1999. Matrix metalloproteinase homologues from Arabidopsis thaliana. J. Biol. Chem. 274:34706-34710 https://doi.org/10.1074/jbc.274.49.34706
- McGeehan, G., Burkhart, W., Anderegg, R., Becherer, J. D., Gillikin, J. W. and Graham, J. S. 1992. Sequencing and characterization of the soybean leaf metalloproteinase: Structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 99:1179-1183 https://doi.org/10.1104/pp.99.3.1179
- Nagase, H., Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491-21494 https://doi.org/10.1074/jbc.274.31.21491
- Navarre, D. A. and Wolpert, T. J. 1999. Victorin induction of an apoptotic, senescence-like response in oats. Plant Cell 11:237-250 https://doi.org/10.1105/tpc.11.2.237
- Pak, J. H., Liu, C. Y., Huangpu, J. and Graham, J. S. 1997. Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404:283-288 https://doi.org/10.1016/S0014-5793(97)00141-5
- Petitot, A. S., Blein, J. P., Pugin, A. and Suty, L. 1997. Cloning of two plant cDNAs encoding a beta-type proteasome subunit and a transformer-2-like SR-related protein: early induction of the corresponding genes in tobacco cells treated with cryptogein. Plant Mol Biol. 35:261-269 https://doi.org/10.1023/A:1005833216479
- Rawlings, N. D. and Barrett, A. J. 1999. MEROPS: the peptidase database. Nucleic Acids Res. 27:325-331 https://doi.org/10.1093/nar/27.1.325
- Rawlings, N. D. Morton, F. R. and Barrett, A. J. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34:D270-272 https://doi.org/10.1093/nar/gkj089
- Roberts, K. 1994. The plant extracellular matrix: in a new expansive mood. Curr. Opin. Cell Biol. 6:688-694 https://doi.org/10.1016/0955-0674(94)90095-7
- Rojo, E., Martin, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., Jin, H., Paneque, M., Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M. and Raikhel, N. V. 2004. VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897-1906 https://doi.org/10.1016/j.cub.2004.09.056
- Rooney, H. C., Van't Klooster, J. W., van der Hoorn, R. A., Joosten, M. H., Jones, J. D. and de Wit, P. J. 2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783-1786 https://doi.org/10.1126/science.1111404
- Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M. and Raikhel, N. V. 2004. VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897-1906 https://doi.org/10.1016/j.cub.2004.09.056
- Sanmartin, M., Jaroszewski, L., Raikhel, N. V. and Rojo, E. 2005. Caspases. Regulating death since the origin of life. Plant Physiol. 137:841-847 https://doi.org/10.1104/pp.104.058552
- Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R., Harzen, A., Colby, T., Kamoun, S. and van der Hoorn, R. A. 2008. Fungal effector protein AVR2 targets diversifying defenserelated Cys proteases of tomato. Plant Cell 20:1169-1183 https://doi.org/10.1105/tpc.107.056325
- Shindo, T. and van der Hoorn, R. A. 2008. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 9:119-125
- Simoes, I., Faro, R., Bur, D. and Faro, C. 2007. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. J. Biol. Chem. 282:31358-31365 https://doi.org/10.1074/jbc.M702477200
- Small, J. and Vierstra, R. D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55:555-590 https://doi.org/10.1146/annurev.arplant.55.031903.141801
- Suty, L., Lequeu, J., Lançon, A., Etienne, P., Petitot, A. S. and Blein, J. P. 2003. Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of plant defense proteasomes. Int. J. Biochem. Cell Biol. 35:637-650 https://doi.org/10.1016/S1357-2725(02)00386-2
- Tian, M., Huitema, E., Da cunha, L., Torto-Alalibo, T. and Kamoun, S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato Pathogenesisrelated Protease P69B. J. Biol. Chem. 279: 26370-26377 https://doi.org/10.1074/jbc.M400941200
- Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E. and Kamoun, S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143:364-377 https://doi.org/10.1104/pp.106.090050
- Uren, A. G., O'Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V. and Dixit, V. M. 2000. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell. 6:961-967
- Van Baarlen, P., Woltering, E. J., Staats, M. and Van Kan, J. A. L. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8:41-54 https://doi.org/10.1111/j.1364-3703.2006.00367.x
- van der Hoorn, R. A. L. and Jones, J. D. 2004. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7:400-407 https://doi.org/10.1016/j.pbi.2004.04.003
- van der Hoorn, R. A. L. 2008. Plant proteases: From pheotypes to molecular mechanisms. Annu. Rev. Plant Biol. 59:191-223 https://doi.org/10.1146/annurev.arplant.59.032607.092835
- van Doorn W. G. and Woltering, E. J. 2004. Senescence and programmed cell death: substance or semantics? J. Exp. Bot. 55:2147-2153 https://doi.org/10.1093/jxb/erh264
- Watanabe, N. and Lam, E. 2004. Recent advance in the study of caspase-like protease and Bax inhibitor-1 in plants: their possible roles as regulators of programmed cell death. Mol. Plant Pathol. 5:65-70 https://doi.org/10.1111/j.1364-3703.2004.00206.x
- Watanabe, N. and Lam, E. 2005. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J. Biol. Chem. 280:14691-14699 https://doi.org/10.1074/jbc.M413527200
- Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A. and Lamb, C. 2004. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23:980-988 https://doi.org/10.1038/sj.emboj.7600086
Cited by
- Purification, biochemical characterization and antioxidant property of ZCPG, a cysteine protease from Zingiber montanum rhizome 2017, https://doi.org/10.1016/j.ijbiomac.2017.08.078
- Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063533
- Protease inhibitors decrease the resistance of Vitaceae to Plasmopara viticola vol.60, 2012, https://doi.org/10.1016/j.plaphy.2012.07.028
- Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities vol.242, pp.5, 2015, https://doi.org/10.1007/s00425-015-2346-9
- Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance vol.145, pp.1, 2012, https://doi.org/10.1111/j.1399-3054.2012.01573.x
- Proteomic analysis of the testa from developing soybean seeds vol.89, 2013, https://doi.org/10.1016/j.jprot.2013.05.013
- A new ZTL-type F-box functions as a positive regulator in disease resistance: VIGS analysis in barley against powdery mildew vol.74, pp.1, 2009, https://doi.org/10.1016/j.pmpp.2009.08.003
- Nicotiana benthamiana Matrix Metalloprotease 1 ( NMMP 1) gene confers disease resistance to Phytophthora infestans in tobacco and potato plants vol.218, 2017, https://doi.org/10.1016/j.jplph.2017.08.010
- Cytological and Transcriptional Dynamics Analysis of Host Plant Revealed Stage-Specific Biological Processes Related to Compatible Rice-Ustilaginoidea virens Interaction vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0091391