DOI QR코드

DOI QR Code

Roles of Plant Proteases in Pathogen Defense

  • Published : 2008.12.01

Abstract

The genomes of plants contain more than 600 genes encoding a diverse set of proteases and the subunits of proteasomes. These proteases and proteasomes consist of plant proteolytic systems, which are involved in various cellular metabolic processes. Plant proteolytic systems have been shown to have diverse roles in defense responses, such as execution of the attack on the invading organisms, participation in signaling cascades, and perception of the invaders. In order to provide a framework for illustrating the importance of proteolytic systems in plant defense, characteristics of non-proteasome proteases and the 26S proteasome are summarized. The involvement of caspase-like proteases, saspases, apoplastic proteases, and the 26S proteasome in pathogen defense suggests that plant proteolytic systems are essential for defense and further clarity on the roles of plant proteases in defense is challenging but fundamentally important to understand plant-microbe interactions.

Keywords

References

  1. Agrios, G. N. 2005. Plant Pathology, 5th Ed., Elservier Academic Press, San Diego
  2. Avrova, A. O., Stewart, H. E., De Jong, W., Heilbronn, J., Lyon, G.D. and Birch, R. R. J. 1999. A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol. Plant Microbe Interact. 12:1114-1119 https://doi.org/10.1094/MPMI.1999.12.12.1114
  3. Avrova, A. O., Taleb, N., Rokka, V. M., Heilbronn, J., Campbell, E., Hein, I., Gilroy, E. M., Cardle, L., Bradshaw, J. E. and Stewart, H. E. 2004. Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Mol. Plant Pathol. 5:45-56 https://doi.org/10.1111/j.1364-3703.2004.00205.x
  4. Barrett, A. J., Rawlings, N. D. and Woessner J. F. (eds.). 2004. Handbook of Proteolytic Enzymes, Elservier Academic Press, London
  5. Becker, J., Kempf, R., Jeblick, W. and Kauss, H. 2000. Induction of competence for elicitation of defense responses in cucumber hypocotyls requires proteasome activity. Plant J. 21:311-316 https://doi.org/10.1046/j.1365-313x.2000.00677.x
  6. Beers, E. P., Woffenden B. J. and Zhao, C. 2000. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399-415 https://doi.org/10.1023/A:1026556928624
  7. Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P. and Delledonne, M. 2003. A cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270:2593-2604 https://doi.org/10.1046/j.1432-1033.2003.03630.x
  8. Bonneau, L., Ge, Y., Drury, G. E. and Gallois, P. 2008. What happened to plant caspases? J. Exp. Bot. 59:491-499 https://doi.org/10.1093/jxb/erm352
  9. Buchanan, B. B., Gruissem, W. and Jones, R. L. 2002. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, p. 447
  10. Coffeen, W. C. and Wolpert, T. J. 2004. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857-873 https://doi.org/10.1105/tpc.017947
  11. Combier, J. P., Vernié, T., De billy, F., El yahyaoui, F., Mathis, R. and Gamas, P. 2007. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol. 144:703-716 https://doi.org/10.1104/pp.106.092585
  12. Dahan, J., Etienne, P., Petitot, A. S., Houot, V., Blein, J. P. and Suty, L. 2001. Cryptogein affects expression of $\alpha$3, $\alpha$6 and b1 20S proteasome subunits encoding genes in tobacco. J. Exp. Bot. 52:1947-1948 https://doi.org/10.1093/jexbot/52.362.1947
  13. Delaure, S., Van Hemelrijck, W., De bolle, M., Cammue, B. and De coninck, B. 2008. Building up plant defense by breaking down proteins. Plant Sci. 174:375-385 https://doi.org/10.1016/j.plantsci.2008.01.008
  14. Devoto, A., Muskett, P. R. and Shirasu, K. 2003. Role of ubiquitination in the regulation of plant defence against pathogens. Curr. Opin. Plant. Biol. 6:307-311 https://doi.org/10.1016/S1369-5266(03)00060-8
  15. Dreher, K. A. and Callis, J. 2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 9: 787-822
  16. Ellis, C., Turner, J. G. and Devoto, A. 2002. Protein complexes mediate signalling in plant responses to hormones, light, sucrose and pathogens. Plant Mol. Biol. 50:971-980 https://doi.org/10.1023/A:1021291522243
  17. El Moussaoui A., Nijs, M., Paul, C., Wintjens, R., Vincentelli, J., Azarkan, M. and Looze, Y. 2001. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol. Life Sci. 58:556-570 https://doi.org/10.1007/PL00000881
  18. Garcia-Lorenzo, M., Sjödin, A., Jansson, S. and Funk, C. 2006. Protease gene families in Populus and Arabidopsis. BMC Plant Biol. 6:30 https://doi.org/10.1186/1471-2229-6-30
  19. Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., Lopez, E. C., Borras-Hidalgo, O., Pritchard, L., Loake, G. J., Lacomme, C. and Birch, P. R. 2007. Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J. 52:1-13 https://doi.org/10.1111/j.1365-313X.2007.03226.x
  20. Glickman, M. H. and Ciechanover, A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:373-428 https://doi.org/10.1152/physrev.00027.2001
  21. Golldack, D., Popova, O. V. and Dietz, K. J. 2002. Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J. Biol .Chem. 277:5541-5547 https://doi.org/10.1074/jbc.M106197200
  22. Graham, I. A., Xiong, J. and Gillikin, J. W. 1991. Purification and developmental analysis of a metalloproteinase from the leaves of Glycine max. Plant Physiol. 97:786-792 https://doi.org/10.1104/pp.97.2.786
  23. Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755-758 https://doi.org/10.1038/nature06782
  24. Grütter, M. G. 2000. Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10:649-655 https://doi.org/10.1016/S0959-440X(00)00146-9
  25. Hao, L., Hsiang, T. and Goodwin, P. H. 2006. Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato. Plant Sci. 170:1001-1009 https://doi.org/10.1016/j.plantsci.2006.01.011
  26. Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2004. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855-858 https://doi.org/10.1126/science.1099859
  27. He, R., Drury, G. E., Rotari, V. I., Gordon, A., Willer, M., Tabasum, F., Woltering, E. J. and Gallois, P. 2007. Metacaspase-8 modulates programmed cell death induced by UV and $H_2O_2$ in Arabidopsis. J. Biol. Chem. 283:774-783 https://doi.org/10.1074/jbc.M704185200
  28. Hoeberichts, F. A., Ten Have, A. and Woltering, E. J. 2003. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517-522 https://doi.org/10.1007/s00425-003-1049-9
  29. Jesenberger, V. and Jentsch, S. 2002. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3:112-121 https://doi.org/10.1038/nrm731
  30. Jones, J. D. G. and Dangle, J. L. 2006. The plant immune system. Nature 444:323-329 https://doi.org/10.1038/nature05286
  31. Kraft, E., Stone, S. L., Ma, L., Su, N., Gao, Y., Lau, O.-S., Deng, X. W. and Callis, J. 2005. Genome analysis and functional characterization of the E2 and ring domain E3 ligase ubiquitination enzymes of Arabidopsis thaliana. Plant Physiol. 139:1597-1611 https://doi.org/10.1104/pp.105.067983
  32. Kruger, J., Thomas, C. M., Golstein, C., Dixon, M. S., Smoker, M., Tang, S., Mulder, L. and Jones, J. D. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:744-747 https://doi.org/10.1126/science.1069288
  33. Kurepa, J. and Smalle, J. A. 2008. Structure, function and regulation of plant proteasomes. Biochimie. 90:324-335 https://doi.org/10.1016/j.biochi.2007.07.019
  34. Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2005. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J. Biol. Chem. 280:32914-32920 https://doi.org/10.1074/jbc.M504476200
  35. Lee, S. J., Kelley, B. S., Damasceno, C. M., St John, B., Kim, B. S., Kim, B. D. and Rose, J. K. 2006. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol. Plant Microbe Interact. 19:1368-1377 https://doi.org/10.1094/MPMI-19-1368
  36. Lequeu, J., Simon-Plas, F., Fromentin, J., Etienne, P., Petitot, A. S., Blein, J. P. and Suty, L. 2005. Proteasome comprising a beta1 inducible subunit acts as a negative regulator of NADPH oxidase during elicitation of plant defense reactions. FEBS Lett. 579:4879-4886 https://doi.org/10.1016/j.febslet.2005.07.073
  37. Li, J., Brader, G. and Palva, E. T. 2008. Kunitz Trypsin Inhibitor: An antagonist of cell death triggered by phytopathogens and fumonisin B1 in Arabidopsis. Mol. Plant. 1:482-495 https://doi.org/10.1093/mp/ssn013
  38. Li, Z., Sommer, A., Dingermann, T. and Noe, C. R. 1996. Molecular cloning and sequence analysis of a cDNA encoding a cysteine proteinase inhibitor from sorghum bicolor seedlings. Mol. Gen. Genet. 251:499-502
  39. Liu, Y., Dammann, C. and Bhattacharyya, M. K. 2001. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol. 127:1788-1797 https://doi.org/10.1104/pp.010593
  40. Luderer, R., Takken, F. L. W., de Wit, P. J. G. M. and Joosten, M. H. A. J. 2002.Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol. Microbiol. 45: 875-884 https://doi.org/10.1046/j.1365-2958.2002.03060.x
  41. Madeo, F., Herker, E., Maldener, C. et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell. 9:911-917 https://doi.org/10.1016/S1097-2765(02)00501-4
  42. Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G. and Clark, I. M. 1999. Matrix metalloproteinase homologues from Arabidopsis thaliana. J. Biol. Chem. 274:34706-34710 https://doi.org/10.1074/jbc.274.49.34706
  43. McGeehan, G., Burkhart, W., Anderegg, R., Becherer, J. D., Gillikin, J. W. and Graham, J. S. 1992. Sequencing and characterization of the soybean leaf metalloproteinase: Structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 99:1179-1183 https://doi.org/10.1104/pp.99.3.1179
  44. Nagase, H., Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491-21494 https://doi.org/10.1074/jbc.274.31.21491
  45. Navarre, D. A. and Wolpert, T. J. 1999. Victorin induction of an apoptotic, senescence-like response in oats. Plant Cell 11:237-250 https://doi.org/10.1105/tpc.11.2.237
  46. Pak, J. H., Liu, C. Y., Huangpu, J. and Graham, J. S. 1997. Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404:283-288 https://doi.org/10.1016/S0014-5793(97)00141-5
  47. Petitot, A. S., Blein, J. P., Pugin, A. and Suty, L. 1997. Cloning of two plant cDNAs encoding a beta-type proteasome subunit and a transformer-2-like SR-related protein: early induction of the corresponding genes in tobacco cells treated with cryptogein. Plant Mol Biol. 35:261-269 https://doi.org/10.1023/A:1005833216479
  48. Rawlings, N. D. and Barrett, A. J. 1999. MEROPS: the peptidase database. Nucleic Acids Res. 27:325-331 https://doi.org/10.1093/nar/27.1.325
  49. Rawlings, N. D. Morton, F. R. and Barrett, A. J. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34:D270-272 https://doi.org/10.1093/nar/gkj089
  50. Roberts, K. 1994. The plant extracellular matrix: in a new expansive mood. Curr. Opin. Cell Biol. 6:688-694 https://doi.org/10.1016/0955-0674(94)90095-7
  51. Rojo, E., Martin, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., Jin, H., Paneque, M., Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M. and Raikhel, N. V. 2004. VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897-1906 https://doi.org/10.1016/j.cub.2004.09.056
  52. Rooney, H. C., Van't Klooster, J. W., van der Hoorn, R. A., Joosten, M. H., Jones, J. D. and de Wit, P. J. 2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783-1786 https://doi.org/10.1126/science.1111404
  53. Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M. and Raikhel, N. V. 2004. VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897-1906 https://doi.org/10.1016/j.cub.2004.09.056
  54. Sanmartin, M., Jaroszewski, L., Raikhel, N. V. and Rojo, E. 2005. Caspases. Regulating death since the origin of life. Plant Physiol. 137:841-847 https://doi.org/10.1104/pp.104.058552
  55. Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R., Harzen, A., Colby, T., Kamoun, S. and van der Hoorn, R. A. 2008. Fungal effector protein AVR2 targets diversifying defenserelated Cys proteases of tomato. Plant Cell 20:1169-1183 https://doi.org/10.1105/tpc.107.056325
  56. Shindo, T. and van der Hoorn, R. A. 2008. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 9:119-125
  57. Simoes, I., Faro, R., Bur, D. and Faro, C. 2007. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. J. Biol. Chem. 282:31358-31365 https://doi.org/10.1074/jbc.M702477200
  58. Small, J. and Vierstra, R. D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55:555-590 https://doi.org/10.1146/annurev.arplant.55.031903.141801
  59. Suty, L., Lequeu, J., Lançon, A., Etienne, P., Petitot, A. S. and Blein, J. P. 2003. Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of plant defense proteasomes. Int. J. Biochem. Cell Biol. 35:637-650 https://doi.org/10.1016/S1357-2725(02)00386-2
  60. Tian, M., Huitema, E., Da cunha, L., Torto-Alalibo, T. and Kamoun, S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato Pathogenesisrelated Protease P69B. J. Biol. Chem. 279: 26370-26377 https://doi.org/10.1074/jbc.M400941200
  61. Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E. and Kamoun, S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143:364-377 https://doi.org/10.1104/pp.106.090050
  62. Uren, A. G., O'Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V. and Dixit, V. M. 2000. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell. 6:961-967
  63. Van Baarlen, P., Woltering, E. J., Staats, M. and Van Kan, J. A. L. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8:41-54 https://doi.org/10.1111/j.1364-3703.2006.00367.x
  64. van der Hoorn, R. A. L. and Jones, J. D. 2004. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7:400-407 https://doi.org/10.1016/j.pbi.2004.04.003
  65. van der Hoorn, R. A. L. 2008. Plant proteases: From pheotypes to molecular mechanisms. Annu. Rev. Plant Biol. 59:191-223 https://doi.org/10.1146/annurev.arplant.59.032607.092835
  66. van Doorn W. G. and Woltering, E. J. 2004. Senescence and programmed cell death: substance or semantics? J. Exp. Bot. 55:2147-2153 https://doi.org/10.1093/jxb/erh264
  67. Watanabe, N. and Lam, E. 2004. Recent advance in the study of caspase-like protease and Bax inhibitor-1 in plants: their possible roles as regulators of programmed cell death. Mol. Plant Pathol. 5:65-70 https://doi.org/10.1111/j.1364-3703.2004.00206.x
  68. Watanabe, N. and Lam, E. 2005. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J. Biol. Chem. 280:14691-14699 https://doi.org/10.1074/jbc.M413527200
  69. Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A. and Lamb, C. 2004. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23:980-988 https://doi.org/10.1038/sj.emboj.7600086

Cited by

  1. Purification, biochemical characterization and antioxidant property of ZCPG, a cysteine protease from Zingiber montanum rhizome 2017, https://doi.org/10.1016/j.ijbiomac.2017.08.078
  2. Multiple Classes of Immune-Related Proteases Associated with the Cell Death Response in Pepper Plants vol.8, pp.5, 2013, https://doi.org/10.1371/journal.pone.0063533
  3. Protease inhibitors decrease the resistance of Vitaceae to Plasmopara viticola vol.60, 2012, https://doi.org/10.1016/j.plaphy.2012.07.028
  4. Zebra chip disease decreases tuber (Solanum tuberosum L.) protein content by attenuating protease inhibitor levels and increasing protease activities vol.242, pp.5, 2015, https://doi.org/10.1007/s00425-015-2346-9
  5. Root proteases: reinforced links between nitrogen uptake and mobilization and drought tolerance vol.145, pp.1, 2012, https://doi.org/10.1111/j.1399-3054.2012.01573.x
  6. Proteomic analysis of the testa from developing soybean seeds vol.89, 2013, https://doi.org/10.1016/j.jprot.2013.05.013
  7. A new ZTL-type F-box functions as a positive regulator in disease resistance: VIGS analysis in barley against powdery mildew vol.74, pp.1, 2009, https://doi.org/10.1016/j.pmpp.2009.08.003
  8. Nicotiana benthamiana Matrix Metalloprotease 1 ( NMMP 1) gene confers disease resistance to Phytophthora infestans in tobacco and potato plants vol.218, 2017, https://doi.org/10.1016/j.jplph.2017.08.010
  9. Cytological and Transcriptional Dynamics Analysis of Host Plant Revealed Stage-Specific Biological Processes Related to Compatible Rice-Ustilaginoidea virens Interaction vol.9, pp.3, 2014, https://doi.org/10.1371/journal.pone.0091391