Browse > Article
http://dx.doi.org/10.5423/PPJ.2008.24.4.367

Roles of Plant Proteases in Pathogen Defense  

Baek, Kwang-Hyun (School of Biotechnology, Yeungnam University)
Choi, Do-Il (Dept. of Plant Sciences, Seoul National University)
Publication Information
The Plant Pathology Journal / v.24, no.4, 2008 , pp. 367-374 More about this Journal
Abstract
The genomes of plants contain more than 600 genes encoding a diverse set of proteases and the subunits of proteasomes. These proteases and proteasomes consist of plant proteolytic systems, which are involved in various cellular metabolic processes. Plant proteolytic systems have been shown to have diverse roles in defense responses, such as execution of the attack on the invading organisms, participation in signaling cascades, and perception of the invaders. In order to provide a framework for illustrating the importance of proteolytic systems in plant defense, characteristics of non-proteasome proteases and the 26S proteasome are summarized. The involvement of caspase-like proteases, saspases, apoplastic proteases, and the 26S proteasome in pathogen defense suggests that plant proteolytic systems are essential for defense and further clarity on the roles of plant proteases in defense is challenging but fundamentally important to understand plant-microbe interactions.
Keywords
defense; pathogen; plant proteases; proteasomes;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Beers, E. P., Woffenden B. J. and Zhao, C. 2000. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol. Biol. 44:399-415   DOI   ScienceOn
2 Golldack, D., Popova, O. V. and Dietz, K. J. 2002. Mutation of the matrix metalloproteinase At2-MMP inhibits growth and causes late flowering and early senescence in Arabidopsis. J. Biol .Chem. 277:5541-5547   DOI   ScienceOn
3 Hao, L., Hsiang, T. and Goodwin, P. H. 2006. Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato. Plant Sci. 170:1001-1009   DOI   ScienceOn
4 Kruger, J., Thomas, C. M., Golstein, C., Dixon, M. S., Smoker, M., Tang, S., Mulder, L. and Jones, J. D. 2002. A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:744-747   DOI   ScienceOn
5 Kurepa, J. and Smalle, J. A. 2008. Structure, function and regulation of plant proteasomes. Biochimie. 90:324-335   DOI   ScienceOn
6 Kuroyanagi, M., Yamada, K., Hatsugai, N., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2005. Vacuolar processing enzyme is essential for mycotoxin-induced cell death in Arabidopsis thaliana. J. Biol. Chem. 280:32914-32920   DOI   ScienceOn
7 Luderer, R., Takken, F. L. W., de Wit, P. J. G. M. and Joosten, M. H. A. J. 2002.Cladosporium fulvum overcomes Cf-2-mediated resistance by producing truncated AVR2 elicitor proteins. Mol. Microbiol. 45: 875-884   DOI   ScienceOn
8 McGeehan, G., Burkhart, W., Anderegg, R., Becherer, J. D., Gillikin, J. W. and Graham, J. S. 1992. Sequencing and characterization of the soybean leaf metalloproteinase: Structural and functional similarity to the matrix metalloproteinase family. Plant Physiol. 99:1179-1183   DOI   ScienceOn
9 Li, Z., Sommer, A., Dingermann, T. and Noe, C. R. 1996. Molecular cloning and sequence analysis of a cDNA encoding a cysteine proteinase inhibitor from sorghum bicolor seedlings. Mol. Gen. Genet. 251:499-502
10 Liu, Y., Dammann, C. and Bhattacharyya, M. K. 2001. The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean. Plant Physiol. 127:1788-1797   DOI   ScienceOn
11 Lee, S. J., Kelley, B. S., Damasceno, C. M., St John, B., Kim, B. S., Kim, B. D. and Rose, J. K. 2006. A functional screen to characterize the secretomes of eukaryotic pathogens and their hosts in planta. Mol. Plant Microbe Interact. 19:1368-1377   DOI   ScienceOn
12 Lequeu, J., Simon-Plas, F., Fromentin, J., Etienne, P., Petitot, A. S., Blein, J. P. and Suty, L. 2005. Proteasome comprising a beta1 inducible subunit acts as a negative regulator of NADPH oxidase during elicitation of plant defense reactions. FEBS Lett. 579:4879-4886   DOI   ScienceOn
13 Li, J., Brader, G. and Palva, E. T. 2008. Kunitz Trypsin Inhibitor: An antagonist of cell death triggered by phytopathogens and fumonisin B1 in Arabidopsis. Mol. Plant. 1:482-495   DOI   ScienceOn
14 Rawlings, N. D. and Barrett, A. J. 1999. MEROPS: the peptidase database. Nucleic Acids Res. 27:325-331   DOI   ScienceOn
15 Kraft, E., Stone, S. L., Ma, L., Su, N., Gao, Y., Lau, O.-S., Deng, X. W. and Callis, J. 2005. Genome analysis and functional characterization of the E2 and ring domain E3 ligase ubiquitination enzymes of Arabidopsis thaliana. Plant Physiol. 139:1597-1611   DOI   ScienceOn
16 Rojo, E., Martin, R., Carter, C., Zouhar, J., Pan, S., Plotnikova, J., Jin, H., Paneque, M., Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M. and Raikhel, N. V. 2004. VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897-1906   DOI   ScienceOn
17 Rooney, H. C., Van't Klooster, J. W., van der Hoorn, R. A., Joosten, M. H., Jones, J. D. and de Wit, P. J. 2005. Cladosporium Avr2 inhibits tomato Rcr3 protease required for Cf-2-dependent disease resistance. Science 308:1783-1786   DOI   ScienceOn
18 Rawlings, N. D. Morton, F. R. and Barrett, A. J. 2006. MEROPS: the peptidase database. Nucleic Acids Res. 34:D270-272   DOI   ScienceOn
19 Roberts, K. 1994. The plant extracellular matrix: in a new expansive mood. Curr. Opin. Cell Biol. 6:688-694   DOI   ScienceOn
20 Nagase, H., Woessner, J. F. Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491-21494   DOI
21 Navarre, D. A. and Wolpert, T. J. 1999. Victorin induction of an apoptotic, senescence-like response in oats. Plant Cell 11:237-250   DOI   ScienceOn
22 Pak, J. H., Liu, C. Y., Huangpu, J. and Graham, J. S. 1997. Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404:283-288   DOI   ScienceOn
23 Tian, M., Win, J., Song, J., van der Hoorn, R., van der Knaap, E. and Kamoun, S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143:364-377   DOI   ScienceOn
24 Petitot, A. S., Blein, J. P., Pugin, A. and Suty, L. 1997. Cloning of two plant cDNAs encoding a beta-type proteasome subunit and a transformer-2-like SR-related protein: early induction of the corresponding genes in tobacco cells treated with cryptogein. Plant Mol Biol. 35:261-269   DOI   ScienceOn
25 Madeo, F., Herker, E., Maldener, C. et al. 2002. A caspase-related protease regulates apoptosis in yeast. Mol. Cell. 9:911-917   DOI   ScienceOn
26 Tian, M., Huitema, E., Da cunha, L., Torto-Alalibo, T. and Kamoun, S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato Pathogenesisrelated Protease P69B. J. Biol. Chem. 279: 26370-26377   DOI   ScienceOn
27 Uren, A. G., O'Rourke, K., Aravind, L. A., Pisabarro, M. T., Seshagiri, S., Koonin, E. V. and Dixit, V. M. 2000. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell. 6:961-967
28 Sanchez-Serrano, J. J., Baker, B., Ausubel, F. M. and Raikhel, N. V. 2004. VPEg exhibits a caspase-like activity that contributes to defense against pathogens. Curr. Biol. 14:1897-1906   DOI   ScienceOn
29 Sanmartin, M., Jaroszewski, L., Raikhel, N. V. and Rojo, E. 2005. Caspases. Regulating death since the origin of life. Plant Physiol. 137:841-847   DOI   ScienceOn
30 Shabab, M., Shindo, T., Gu, C., Kaschani, F., Pansuriya, T., Chintha, R., Harzen, A., Colby, T., Kamoun, S. and van der Hoorn, R. A. 2008. Fungal effector protein AVR2 targets diversifying defenserelated Cys proteases of tomato. Plant Cell 20:1169-1183   DOI   ScienceOn
31 Shindo, T. and van der Hoorn, R. A. 2008. Papain-like cysteine proteases: key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 9:119-125
32 Simoes, I., Faro, R., Bur, D. and Faro, C. 2007. Characterization of recombinant CDR1, an Arabidopsis aspartic proteinase involved in disease resistance. J. Biol. Chem. 282:31358-31365   DOI   ScienceOn
33 Small, J. and Vierstra, R. D. 2004. The ubiquitin 26S proteasome proteolytic pathway. Annu. Rev. Plant Biol. 55:555-590   DOI
34 Watanabe, N. and Lam, E. 2005. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast. J. Biol. Chem. 280:14691-14699   DOI   ScienceOn
35 Xia, Y., Suzuki, H., Borevitz, J., Blount, J., Guo, Z., Patel, K., Dixon, R. A. and Lamb, C. 2004. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J. 23:980-988   DOI   ScienceOn
36 Van Baarlen, P., Woltering, E. J., Staats, M. and Van Kan, J. A. L. 2007. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: an important role for cell death control. Mol. Plant Pathol. 8:41-54   DOI   ScienceOn
37 van der Hoorn, R. A. L. and Jones, J. D. 2004. The plant proteolytic machinery and its role in defence. Curr. Opin. Plant Biol. 7:400-407   DOI   ScienceOn
38 Watanabe, N. and Lam, E. 2004. Recent advance in the study of caspase-like protease and Bax inhibitor-1 in plants: their possible roles as regulators of programmed cell death. Mol. Plant Pathol. 5:65-70   DOI   ScienceOn
39 van der Hoorn, R. A. L. 2008. Plant proteases: From pheotypes to molecular mechanisms. Annu. Rev. Plant Biol. 59:191-223   DOI   ScienceOn
40 van Doorn W. G. and Woltering, E. J. 2004. Senescence and programmed cell death: substance or semantics? J. Exp. Bot. 55:2147-2153   DOI   ScienceOn
41 Suty, L., Lequeu, J., Lançon, A., Etienne, P., Petitot, A. S. and Blein, J. P. 2003. Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of plant defense proteasomes. Int. J. Biochem. Cell Biol. 35:637-650   DOI   ScienceOn
42 Ellis, C., Turner, J. G. and Devoto, A. 2002. Protein complexes mediate signalling in plant responses to hormones, light, sucrose and pathogens. Plant Mol. Biol. 50:971-980   DOI   ScienceOn
43 Gilroy, E. M., Hein, I., van der Hoorn, R., Boevink, P. C., Venter, E., McLellan, H., Kaffarnik, F., Hrubikova, K., Shaw, J., Holeva, M., Lopez, E. C., Borras-Hidalgo, O., Pritchard, L., Loake, G. J., Lacomme, C. and Birch, P. R. 2007. Involvement of cathepsin B in the plant disease resistance hypersensitive response. Plant J. 52:1-13   DOI   ScienceOn
44 Glickman, M. H. and Ciechanover, A. 2002. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82:373-428   DOI
45 Dreher, K. A. and Callis, J. 2007. Ubiquitin, hormones and biotic stress in plants. Ann. Bot. 9: 787-822
46 Devoto, A., Muskett, P. R. and Shirasu, K. 2003. Role of ubiquitination in the regulation of plant defence against pathogens. Curr. Opin. Plant. Biol. 6:307-311   DOI   ScienceOn
47 Maidment, J. M., Moore, D., Murphy, G. P., Murphy, G. and Clark, I. M. 1999. Matrix metalloproteinase homologues from Arabidopsis thaliana. J. Biol. Chem. 274:34706-34710   DOI   ScienceOn
48 El Moussaoui A., Nijs, M., Paul, C., Wintjens, R., Vincentelli, J., Azarkan, M. and Looze, Y. 2001. Revisiting the enzymes stored in the laticifers of Carica papaya in the context of their possible participation in the plant defence mechanism. Cell Mol. Life Sci. 58:556-570   DOI   ScienceOn
49 Garcia-Lorenzo, M., Sjödin, A., Jansson, S. and Funk, C. 2006. Protease gene families in Populus and Arabidopsis. BMC Plant Biol. 6:30   DOI   ScienceOn
50 Delaure, S., Van Hemelrijck, W., De bolle, M., Cammue, B. and De coninck, B. 2008. Building up plant defense by breaking down proteins. Plant Sci. 174:375-385   DOI   ScienceOn
51 Avrova, A. O., Taleb, N., Rokka, V. M., Heilbronn, J., Campbell, E., Hein, I., Gilroy, E. M., Cardle, L., Bradshaw, J. E. and Stewart, H. E. 2004. Potato oxysterol binding protein and cathepsin B are rapidly up-regulated in independent defence pathways that distinguish R gene-mediated and field resistances to Phytophthora infestans. Mol. Plant Pathol. 5:45-56   DOI   ScienceOn
52 Dahan, J., Etienne, P., Petitot, A. S., Houot, V., Blein, J. P. and Suty, L. 2001. Cryptogein affects expression of $\alpha$3, $\alpha$6 and b1 20S proteasome subunits encoding genes in tobacco. J. Exp. Bot. 52:1947-1948   DOI   ScienceOn
53 Bonneau, L., Ge, Y., Drury, G. E. and Gallois, P. 2008. What happened to plant caspases? J. Exp. Bot. 59:491-499   DOI   ScienceOn
54 Belenghi, B., Acconcia, F., Trovato, M., Perazzolli, M., Bocedi, A., Polticelli, F., Ascenzi, P. and Delledonne, M. 2003. A cystatin from Arabidopsis thaliana, suppresses hypersensitive cell death. Eur. J. Biochem. 270:2593-2604   DOI   ScienceOn
55 Buchanan, B. B., Gruissem, W. and Jones, R. L. 2002. Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, p. 447
56 Coffeen, W. C. and Wolpert, T. J. 2004. Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857-873   DOI   ScienceOn
57 Combier, J. P., Vernié, T., De billy, F., El yahyaoui, F., Mathis, R. and Gamas, P. 2007. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol. 144:703-716   DOI   ScienceOn
58 Agrios, G. N. 2005. Plant Pathology, 5th Ed., Elservier Academic Press, San Diego
59 Barrett, A. J., Rawlings, N. D. and Woessner J. F. (eds.). 2004. Handbook of Proteolytic Enzymes, Elservier Academic Press, London
60 Becker, J., Kempf, R., Jeblick, W. and Kauss, H. 2000. Induction of competence for elicitation of defense responses in cucumber hypocotyls requires proteasome activity. Plant J. 21:311-316   DOI   ScienceOn
61 Avrova, A. O., Stewart, H. E., De Jong, W., Heilbronn, J., Lyon, G.D. and Birch, R. R. J. 1999. A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol. Plant Microbe Interact. 12:1114-1119   DOI   ScienceOn
62 He, R., Drury, G. E., Rotari, V. I., Gordon, A., Willer, M., Tabasum, F., Woltering, E. J. and Gallois, P. 2007. Metacaspase-8 modulates programmed cell death induced by UV and $H_2O_2$ in Arabidopsis. J. Biol. Chem. 283:774-783   DOI   ScienceOn
63 Jesenberger, V. and Jentsch, S. 2002. Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3:112-121   DOI   ScienceOn
64 Jones, J. D. G. and Dangle, J. L. 2006. The plant immune system. Nature 444:323-329   DOI   ScienceOn
65 Graham, I. A., Xiong, J. and Gillikin, J. W. 1991. Purification and developmental analysis of a metalloproteinase from the leaves of Glycine max. Plant Physiol. 97:786-792   DOI   ScienceOn
66 Groll, M., Schellenberg, B., Bachmann, A. S., Archer, C. R., Huber, R., Powell, T. K., Lindow, S., Kaiser, M. and Dudler, R. 2008. A plant pathogen virulence factor inhibits the eukaryotic proteasome by a novel mechanism. Nature 452:755-758   DOI   ScienceOn
67 Grütter, M. G. 2000. Caspases: key players in programmed cell death. Curr. Opin. Struct. Biol. 10:649-655   DOI   ScienceOn
68 Hoeberichts, F. A., Ten Have, A. and Woltering, E. J. 2003. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517-522   DOI   ScienceOn
69 Hatsugai, N., Kuroyanagi, M., Yamada, K., Meshi, T., Tsuda, S., Kondo, M., Nishimura, M. and Hara-Nishimura, I. 2004. A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855-858   DOI   ScienceOn