Browse > Article

Degradation of Insect Humoral Immune Proteins by the Proteases Secreted from Enterococcus faecalis  

Park, Shin-Yong (Department of Bio-Technology, Hoseo University)
Kim, Koung-Mi (Department of Bio-Technology, Hoseo University)
Kim, Ik-Soo (College of Agriculture & Life Sciences, Chonnam National University)
Lee, Sang-Dae (Department of Biology, Seonam University)
Lee, In-Hee (Department of Bio-Technology, Hoseo University)
Publication Information
International Journal of Industrial Entomology and Biomaterials / v.13, no.1, 2006 , pp. 37-43 More about this Journal
Abstract
Enterococcus faecalis was isolated from the body fluid of dead Galleria mellonella larvae. Upon injection of E. faecalis into the hemocoel of G. mellonella, the bacteria destroyed parts of humoral defense systems in the hemolymph. In a test for the proteolytic activity of E. faecalis CS, it was confirmed that the enzyme degraded three well-known a-helical antimicrobial peptides, cecropin A, melittin and halocidin, and abolished their activities. We also determined putative cleavage sites on the primary sequences of three peptides through purification and mass analysis of peptide fragments digested by E. faecalis CS. Furthermore it was found that apolipophorin-III, recently known as a critical recognition protein for invading microbes in the hemolymph of G. mellonella, was also degraded by E. faecalis CS. Taken together, the present work shows that the protease in secretions from E. faecalis destroyed two critical humoral immune factors in the hemolymph of G. mellonella larvae. In addition, this paper demonstrates that the relationship between the host insect and the pathogenic bacteria might provide a valuable model system to study the enterococcal virulence mechanism, which may be relevant to mammalian pathogenesis.
Keywords
Enterococcus faecalis; Galleria mellonella; Apolipophorin III; Metalloprotease; Antimicrobial peptides; Extracellular proteases;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Dzidic, S. and V. Bedekovic (2003) Horizontal gene transfer­emerging multi drug resistance in hospital bacteria. Acta. Pharmacol. Sin. 24, 519-526
2 Ernst, R.K., T. Guina and S. I. Miller (1999) How intracellular bacteria survive: surface modifications that promote resis­tance to host innate immune responses. J. Infect. Dis. 2, S326-S330
3 Kim, C.H., J. H. Lee, I. Kim, S. J. Seo, S. M. Son, K. Y. Lee and I. H. Lee (2004) Purification and cDNA cloning of a Cecropin-like Peptide from the Great Wax Moth, Galleria mellonella. Mol. Cells 17, 262-266
4 Lee, Y. S., E. K. Yun, W. S. Jang, I. Kim, J. H. Lee, S. Y. Park, K. S. Ryu, S. J. Seo, C. H. Kim and I. H. Lee (2004) Purifi­cation, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella. Insect. Mol. Biol. 13, 65-72   DOI   ScienceOn
5 Peschel, A., R. W. Jack, M. Otto, L. V. Collins, P. Staubitz, G. Nicholson, H. Kalbacher, W. F. Nieuwenhuizen; G. Jung, A. Tarkowski, K. P. van Kessel and J. A. van Strijp (2001) Sta­phylococcus aureus resistance to human defensins and eva­sion of neutrophil killing via the novel virulence factor MprF is based on modification of membrane lipids with l-lysine. J. Exp. Med. 193, 1067-1076   DOI
6 Schmidtchen, A., I. M. Frick, E. Andersson, H. Tapper and L. Bjorck (2002) Proteinases of common pathogenic bacteria degrade and inactivate the antibacterial peptide LL-37. Mol. Microbiol. 46, 157-168   DOI   ScienceOn
7 Schmidtchen, A., I. M. Frick and L. Bjorck (2001) Dermatan sulphate is released by proteinases of common pathogenic bacteria and inactivates antibacterial alpha-defensin. Mol. Microbiol. 39, 708-713   DOI   ScienceOn
8 Whitten, M. M., I. F. Tew, B. L. Lee and N. A. Ratcliffe (2004) A novel role for an insect apolipoprotein (apolipophorin III) in beta-1,3-glucan pattern recognition and cellular encapsu­lation reactions. J. Immunol. 172, 2177-2185   DOI
9 Lehrer, R. I., M. Rosenman S. S. Harwig, R. Jackson and P. Eisenhauer (1991) Ultrasensitive assays for endogenous antimicrobial polypeptides. J. Immunol. Methods 137, 167-­173   DOI   ScienceOn
10 Towbin, H., T. Staehelin and J. Gordon (1992) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellu­lose sheets: procedure and some applications. Biotechnology 24, 145-149
11 Frobius, A.C., M. R. Kanost, P. Gotz and A Vilcinskas (2000) Isolation and characterization of novel inducible serine pro­tease inhibitors from larval hemolymph of the greater wax moth Galleria mellonella. Eur. J. Biochem. 267, 2046-2053   DOI   ScienceOn
12 Kreft, B., R. Marre, U. Schramm and R. Wirth (1992) Aggre­gation substance of Enterococcus faecalis mediates adhesion to cultured renal tubular cells. Infect. Immun. 60, 25-30
13 Hughes, A. L. (1999) Evolutionary diversification of the mam­malian defensins. Cell. Mol. Life. Sci. 56, 94-103   DOI
14 Bowen, D., M. Blackburn, T. Rocheleau, C. Grutzmacher and R. H. Ffrench-Constant (2000) Secreted proteases from Pho­torhabdus luminescens: separation of the extracellular pro­teases from the insecticidal Tc toxin complexes. Insect Biochem. Mol. Biol. 30, 69-74   DOI   ScienceOn
15 Hultmark, D. (2003) Drosophila immunity: paths and patterns. Curr. Opin. Immunol. 15, 12-19   DOI   ScienceOn
16 Chen, G., Y. Zhang, J. Li, G. B. Dunphy, Z. K. Punja and J. M. Webster (1996) Chitinase activity of Xenorhabdus and Pho­torhabdus species, bacterial associates of entomopathogenic nematodes. J. Invertebr. Pathol. 68, 101-108   DOI   ScienceOn
17 Jeftke, T., D. Jende, C. Matje, R. U. Ehlers and L. Berthe-Corti (2000) Growth of Photorhabdus luminescens in batch and glucose fed-batch culture. Appl. Microbiol. Biotechnol. 54, 326-330   DOI
18 Bowen, D. J. and J. C. Ensign (1998) Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium pho­torhabdus luminescens. Appl. Environ. Microbiol. 64, 3029-­3035
19 Moore, A. J., W. D. Beazley, M. C. Bibby and D. A. Devine (1996) Antimicrobial activity of cecropins. J. Antimicrob. Chemother. 37, 1077-1089   DOI   ScienceOn
20 Park, S. Y., C. H. Kim, W. H. Jong, J. H. Lee, S. J. Seo, Y. S. Han and I. H. Lee (2005) Effects oftwo hemolymph proteins on humoral defense reaction in the wax moth, Galleria mel­lonella. Dev. Compo Immunol. 29, 43-51   DOI   ScienceOn
21 Schagger, H. and G. von Jagow (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368-379   DOI   ScienceOn
22 Vilmos, P. and E. Kurucz (1998) Insect immunity: evolutionary roots of the mammalian innate immune system. Immunol. Lett. 62, 59-66   DOI   ScienceOn
23 Patel, R. (2003) Clinical impact of vancomycin-resistant enterococci. J. Antimicrob. Chemother. 51, 13-21   DOI   ScienceOn
24 Jang, W.S., K. N. Kim, Y. S. Lee, M. H. Nam and I. H. Lee (2002) Halocidin: a new antimicrobial peptide from hemocytes of the solitary tunicate, Halocynthia aurantium. FEBS Left. 19, 81-86
25 Yu, K. H., K. N. Kim, J. H. Lee, H. S. Lee, S. H. Kim, K. Y. Cho, M. H. Nam and J. H. Lee (2002) Comparative study on characteristics of Iysozymes from the hemolymph of three lepidopteran larvae, Galleria mellonella, Bombyx mori, Agrius convolvuli. Dev. Compo Immunol. 26, 707-713   DOI   ScienceOn
26 Chavers, L. S., S. A Moser, W. H. Benjamin, S. E. Banks, J. R. Steinhauer, A. M. Smith, C. N. Johnson, E. Funkhouser, L. P. Chavers, A. M. Stamm and K. B. Waites (2003) Vancomy­cin-resistant enterococci: 15 years and counting. J. Hosp. Infect. 53, 159-171   DOI   ScienceOn
27 Islam, D., L. Bandholtz, J. Nilsson, H. Wigzell, B. Christens­son, B. Agerberth and G. Gudmundsson (2001) Downregula­tion of bactericidal peptides in enteric infections: a novel immune escape mechanism with bacterial DNA as a potential regulator. Nat. Med. 7, 180-185   DOI   ScienceOn
28 Bulet, P., Hetru C., Dimarcq, J.L. and Hoffinann, D. (1999) Antimicrobial peptides in insects; structure and function. Dev. Compo Immunol. 23, 329-344   DOI   ScienceOn
29 Ffrench-Constant, R. H. and D. J. Bowen (2000) Novel insec­ticidal toxins from nematode-symbiotic bacteria. Cell. Mol. Life. Sci. 57, 828-833   DOI
30 Jarosz, J. (1998) Active resistance of entomophagous rhabditid Heterorhabditis bacteriophora to insect immunity. Parasi­tology 117, 201-208   DOI   ScienceOn
31 Caldas, C., A. Cherqui, A. Pereira and N. Simoes (2002) Puri­fication and characterization of an extracellular protease from Xenorhabdus nematophila involved in insect immuno­-suppression. Appl. Environ. Microbiol. 68, 1297-1304   DOI