• Title/Summary/Keyword: Protein kinases

Search Result 730, Processing Time 0.028 seconds

Korean Red Ginseng improves atopic dermatitis-like skin lesions by suppressing expression of proinflammatory cytokines and chemokines in vivo and in vitro

  • Kee, Ji-Ye;Jeon, Yong-Deok;Kim, Dae-Seung;Han, Yo-Han;Park, Jinbong;Youn, Dong-Hyun;Kim, Su-Jin;Ahn, Kwang Seok;Um, Jae-Young;Hong, Seung-Heon
    • Journal of Ginseng Research
    • /
    • v.41 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Background: The prevalence of allergic inflammatory diseases such as atopic dermatitis (AD), asthma, and allergic rhinitis worldwide has increased and complete recovery is difficult. Korean Red Ginseng, which is the heat-processed root of Panax ginseng Meyer, is widely and frequently used as a traditional medicine in East Asia. In this study, we investigated whether Korean Red Ginseng water extract (RGE) regulates the expression of proinflammatory cytokines and chemokines via the mitogen-activated protein kinases (MAPKs)/nuclear factor kappa B ($NF-{\kappa}B$) pathway in allergic inflammation. Methods: Compound 48/80-induced anaphylactic shock and 1-fluoro-2,4-dinitrobenzene (DNFB)-induced AD-like skin lesion mice models were used to investigate the antiallergic effects of RGE. Human keratinocytes (HaCaT cells) and human mast cells (HMC-1) were also used to clarify the effects of RGE on the expression of proinflammatory cytokines and chemokines. Results: Anaphylactic shock and DNFB-induced AD-like skin lesions were attenuated by RGE administration through reduction of serum immunoglobulin E (IgE) and interleukin (IL)-6 levels in mouse models. RGE also reduced the production of proinflammatory cytokines including $IL-1{\beta}$, IL-6, and IL-8, and expression of chemokines such as IL-8, thymus and activation-regulated chemokine (TARC), and macrophage-derived chemokine (MDC) in HaCaT cells. Additionally, RGE decreased the release of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), $IL-1{\beta}$, IL-6, and IL-8 as well as expressions of chemokines including macro-phage inflammatory protein $(MIP)-1{\alpha}$, $MIP-1{\beta}$, regulated on activation, normal T cell expressed and secreted (RANTES), monocyte chemoattractant protein (MCP)-1, and IL-8 in HMC-1 cells. Furthermore, our data demonstrated that these inhibitory effects occurred through blockage of the MAPK and $NF-{\kappa}B$ pathway. Conclusion: RGE may be a useful therapeutic agent for the treatment of allergic inflammatory diseases such as AD-like dermatitis.

Phosphorylation Properties of Recombinant OsCPK11, a Calcium-dependent Protein Kinase from Rice (벼의 칼슘-의존적 단백질 카이네즈인 재조합 OsCPK11의 인산화 특성)

  • Cho, Il-Sang;Lee, Su-Hee;Park, Chung-Mo;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1393-1402
    • /
    • 2017
  • In plants, calcium ($Ca^{2+}$)-dependent protein kinases (CDPKs) are important sensors of $Ca^{2+}$ signals. Previous research demonstrated the expression of the OsCPK11 gene in various tissues at the transcription level, but its developmental and biochemical functions at the protein level were not determined. This study was aimed to identify biochemical characteristics of OsCPK11. GST- OsCPK11 was expressed in E. coli and used for an in vitro kinase assay. Biochemical analyses identified OsCPK11 as a CDPK. OsCPK11 autophosphorylated itself and transphosphorylated histone III-s and MBP as substrates in the presence of $Ca^{2+}$. The activity of the recombinant OsCPK11 was influenced by $Mg^{2+}$, with optimum activity detected at pH 7.0-7.5. OsCPK11 activity was not affected by $Mg^{2+}$, $Mn^{2+}$, or $Na^+$ in the presence of a high level of $Ca^{2+}$. Autophosphorylation of OsCPK11 decreased $Ca^{2+}$ sensitivity of OsCPK11. An anti-OsCPK11 rabbit antibody recognized 95.5 kD of GST-OsCPK11, as shown by an immunoblot analysis. These results shed light on the function of OsCPK11 in $Ca^{2+}$-mediated signaling in rice.

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

The Potential 'O-GlcNAc-P'om' ('O-GlcNAc-P'om'의 존재 가능성)

  • Moon, Il Soo;Lee, HyunSook;Lee, Hyung Jong
    • Journal of Life Science
    • /
    • v.23 no.2
    • /
    • pp.324-331
    • /
    • 2013
  • The addition and removal of N-acetylglucosamine (GlcNAc) molecules on serine or threonine residues of a protein is called O-GlcNAcylation. This post-translational modification occurs on both cytoplasmic and nuclear protein, and is fast and reversible as comparable to phosphorylation. In contrast to the phospho-signaling cycles, this emerging moon-lightening signaling is cycled by only two enzymes, O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). The simple machinery is a good evolutionary adaptation of a cell for quick accommodation to continuously fluctuating intra- and extracellular microenvironments. Rather than "switching" on or off a specific proteins - this would be done by phosphorylation where numerous specific kinases and phosphatases are involved - O-GlcNAcylation would play a "rheostat" which would be much more delicately increase or decrease the efficacy of signal transductions in response to cellular nutrient and stress conditions. Interestingly, recent evidence indicates that O-GlcNAc is further modified by phosphorylation. The O-GlcNAc-P will upgrade the modulation efficiency of cellular processes to continuous 'analogue' level. So far, only one protein AP180 was reported to have O-GlcNAc-P on Thr310. But, proteomic data from our laboratory indicate that there are multiple O-GlcNAc-P proteins, constituting "O-GlcNAc-P'om". This will focus on the possibility of existence of "O-GlcNAc-P'om".

Panax ginseng and its ginsenosides: potential candidates for the prevention and treatment of chemotherapy-induced side effects

  • Wan, Yan;Wang, Jing;Xu, Jin-feng;Tang, Fei;Chen, Lu;Tan, Yu-zhu;Rao, Chao-long;Ao, Hui;Peng, Cheng
    • Journal of Ginseng Research
    • /
    • v.45 no.6
    • /
    • pp.617-630
    • /
    • 2021
  • Chemotherapy-induced side effects affect the quality of life and efficacy of treatment of cancer patients. Current approaches for treating the side effects of chemotherapy are poorly effective and may cause numerous harmful side effects. Therefore, developing new and effective drugs derived from natural nontoxic compounds for the treatment of chemotherapy-induced side effects is necessary. Experiments in vivo and in vitro indicate that Panax ginseng (PG) and its ginsenosides are undoubtedly non-toxic and effective options for the treatment of chemotherapy-induced side effects, such as nephrotoxicity, hepatotoxicity, cardiotoxicity, immunotoxicity, and hematopoietic inhibition. The mechanism focus on anti-oxidation, anti-inflammation, and anti-apoptosis, as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (Nrf2)/heme oxygenase-1 (HO-1), P62/keap1/Nrf2, c-jun Nterminal kinase (JNK)/P53/caspase 3, mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinases (ERK), AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase kinase 4 (MKK4)/JNK, and phosphatidylinositol 3-kinase (PI3K)/AKT. Since a systemic review of the effect and mechanism of PG and its ginsenosides on chemotherapy-induced side effects has not yet been published, we provide a comprehensive summarization with this aim and shed light on the future research of PG.

Anti-inflammatory Activities of Ethanol Extracts from Leaf, Seed, and Seedpod of Nelumbo nucifera (연잎, 연자육, 연자방 에탄올 추출물의 항염증 활성)

  • Lee, Eun-Joo;Seo, Yu-Mi;Kim, Yong-Hyun;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.29 no.4
    • /
    • pp.436-441
    • /
    • 2019
  • Nelumbo nucifera, also known as sacred lotus, has mainly been used as a food throughout the Asian countries. In the present study, we prepared ethanol extracts from leaf (NL), seed (NS), and seedpod (NSP) of Nelumbo nucifera and investigated their anti-inflammatory activities in mouse macrophage RAW 264.7 cells. To evaluate the anti-inflammatory activities of NL, NS, and NSP, nitric oxide (NO) production was measured in LPS-stimulated RAW 264.7 cells. NL, NS, and NSP significantly reduced NO production in a dose-dependent manner without affecting cell viabilities. NL, NS, and NSP dramatically decreased the protein expression of pro-inflammatory genes such as iNOS and COX-2. NL, NS, and NSP also suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating they have their anti-inflammatory activities via regulating mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) pathways. In addition, we analyzed the production of reactive oxygen species (ROS) by the treatment of NL, NS, and NSP. All extracts reduced ROS production in a dose-dependent manner. And also, they increased heme oxygenase-1 (HO-1) protein expression and the nuclear translocation of nuclear respiratory factor 2 (Nrf2). In conclusion, our results suggest that Nelumbo nucifera has its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.

The Effect of Saccharin on the Gene Expression of NF-κB and Inflammatory Cytokines in LPS-Stimulated SW480 Colon Cancer Cells (옥수수수염 추출물이 SW480 Colon Cancer Cell에서 NF-κB와 염증성 사이토카인 발현에 미치는 영향)

  • Choi, Hyunji;Kim, Sunlim;Kang, Hyeonjung;Kim, Myunghwan;Kim, Wookyoung
    • Journal of the Korean Dietetic Association
    • /
    • v.25 no.3
    • /
    • pp.217-228
    • /
    • 2019
  • There have been no published studies concerning the anti-inflammatory effects of corn silk on colon cancer cells. Thus, this study was conducted to investigate the effect of corn silk extract containing high levels of maysin on inflammation and its mechanism of action in colon cancer cells. SW 480 human colon cancer cells were treated with $1{\mu}g/mL$ of lipopolysaccharide (LPS) to induce inflammation, and next they were treated with different concentrations of corn silk extract (0, 5, 10 and $15{\mu}g/mL$). The concentrations of nitric oxide (NO) were determined. The mRNA expressions of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor ${\alpha}$ ($TNF-{\alpha}$), interleukin-1beta ($IL-1{\beta}$) and interleukin-6 (IL-6), were determined. Western blot analysis was performed to determine the protein expressions of nuclear factor-kappa B ($NF-{\kappa}B$) and mitogen-activated protein kinases, and the latter consists of extracellular signal-related kinase (ERK), c-jun NH2-terminal kinase (JNK) and p38 MAP kinase (p38). The concentration of NO and the mRNA expression of iNOS were significantly and dose-dependently decreased in the corn silk-treated groups (P<0.05). The mRNA expression of $TNF-{\alpha}$, $IL-1{\beta}$ and IL-6 were significantly increased in the LPS-treated group (P<0.05), but these expressions were significantly and dose-dependently decreased in the corn silk treated groups (P<0.05). The protein expressions of $NF-{\kappa}B$ (in a dose-dependent fashion), ERK (at 10 and $15{\mu}g/mL$), JNK (at $15{\mu}g/mL$) and p38 (at 10 and $15{\mu}g/mL$) were significantly decreased with corn silk treatments (P<0.05). In conclusion, corn silk extract containing high levels of maysin seems to inhibit the LPS-induced inflammatory responses in SW480 colon cancer cells via the $NF-{\kappa}B$ pathway.

Anti-arthritic Activity of Artemisia princeps Pampanini on Complete Freund's Adjuvant-induced Arthritis (Artemisia princeps Pampanini의 complete freund's adjuvant 유발 관절염에 대한 개선 효과)

  • Kim, Ha-Rim;Kim, Sol;Kim, Seon-Young
    • Journal of Life Science
    • /
    • v.31 no.8
    • /
    • pp.736-744
    • /
    • 2021
  • Artemisia princeps Pampanini is an herbal medicine widely used to immune function-related diseases, such as anti-oxidative, anti-inflammatory, and antibacterial agents. In this study, we investigated the anti-inflammatory effects of AP extract and underlying mechanisms were evaluated in RAW 264.7 cells. The effects of AP extract were also studied in a complete Freund's adjuvant (CFA)-induced arthritis and lipopolysaccharide (LPS)-induced inflammation mouse model. In RAW 264.7 cells, AP extracts significantly inhibited the LPS-induced nitric oxide (NO) production and inducible NO synthase and cyclooxygenase-2 protein expression. The LPS-induced phosphorylation of mitogen-activated protein kinases and nuclear factor-κB was also significantly blocked by AP extract in RAW 264.7 cells. Oral administration of AP extract suppressed the increase in mouse paw edema and spleen index compared to CFA-treated mice group. Histologically, the infiltration of inflammatory cells was increased in cartilage and synovium in the CFA-treated mouse group, whereas it was suppressed in the AP extract-administered group. Furthermore, AP extract treatment significantly reduced the inflammatory cytokine, tumor necrosis factor-α, levels in CFA and LPS-treated mouse. In conclusion, the anti-inflammatory and anti-arthritis effect of AP extract was confirmed in both in vitro and in vivo models, suggesting that Artemisia princeps Pampanini may be a candidate material for arthritis treatment.

Anti-inflammatory effect of a mixture of Astragalus membranaceus and Lithospermum erythrorhizon extracts by inhibition of MAPK and NF-κB signaling pathways in RAW264.7 cells (RAW264.7 대식세포에서 MAPK 및 NF-κB 신호전달 경로 억제를 통한 황기 및 지치 복합물의 항염증 효과)

  • Choi, Doo Jin;Kim, Geum Soog;Choi, Bo-Ram;Lee, Young-Seob;Han, Kyung Sook;Lee, Dong-Sung;Lee, Dae Young
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.4
    • /
    • pp.421-428
    • /
    • 2020
  • This study investigated a mixture of Astragalus membranaceus (AM) and Lithospermum erythrorhizon (LE) extracts (ALM16), exerts anti-inflammatory effects in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells, and its underlying mechanism. ALM16 was prepared by mixing AM and LE extracts in a ratio of 7:3 (w/w). Cytotoxicity of ALM16 in RAW264.7 cells was not shown up to 200 ㎍/mL of ALM16. The results of this study showed that ALM16 does-dependently inhibits the production of nitric oxide, prostaglandin E2 and pro-inflammatory cytokines (interleukin-1β, interleukin-6, and tumor necrosis factor-α) in LPS-induced RAW264.7 cells. ALM16 not only markedly reduced the protein expression levels of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) in LPS-stimulated RAW264.7 cells, but also inhibited the nuclear translocation and DNA-binding activity of nuclear factor-kappa B (NF-κB). In addition, ALM16 specifically inhibited the phosphorylation of c-Jun N-terminal kinase and extracellular signal-regulated kinases in LPS-stimulated RAW264.7 cells. In conclusion, these results suggest that ALM16 may exert anti-inflammatory effect by modulating mitogen-activated protein kinase and NF-κB signaling pathways.

3-Acetyl-11-Keto-Beta-Boswellic Acid from Boswellia serrata Attenuates Monosodium Iodoacetate-induced Osteoarthritis by Chondroprotective and Anti-inflammatory Effects (Monosodium iodoacetate로 유발된 골관절염 쥐에 유향(乳香) 성분 3-Acetyl-11-Keto-Beta-Boswellic Acid의 연골보호 및 항염증 효과)

  • Kim, Min Ju;Shin, Mi-Rae;Choi, Hak Joo;Park, Hae-Jin;Choi, Hwang-Yong;Kim, Hwa-Young;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.37 no.5
    • /
    • pp.27-35
    • /
    • 2022
  • Objectives : 3-Acetyl-11-keto-𝛽-boswellic acid (AKBA) is a major active compound in Boswellia serrata. We investigated the arthritic changes following AKBA administration in monosodium iodoacetate (MIA)-induced osteoarthritis rats. Methods : All rats were randomly divided into five groups: Normal, Control, INDO (indomethacin 2 mg/kg treated), AKBA30 (AKBA 30 mg/kg treated), and AKBA60 (AKBA 60 mg/kg treated); drugs were given 2 weeks before MIA injection. For all groups except the normal group, 50 µL of sterile saline with MIA (80 mg/mL) was injected into the right knee joint 2 weeks after drug administration. The drug administration was continued for 4 weeks from 1 week after osteoarthritis induction. The histomorphological changes of knee joint cartilage were observed by H&E staining. Also, the levels of glycosaminoglycan (GAG), cartilage oligomeric matrix protein (COMP), 5-lipoxygenase (5-LOX), 5-LOX-activating protein (FLAP), and leukotriene B4 (LTB4) in the knee joint were determined by the ELISA kits. The expressions of mitogen-activated protein kinases (MAPKs), inflammatory cytokines, and matrix metalloproteinases (MMPs) in knee joint were detected by Western blot. Results : Data show that levels of 5-LOX, FLAP, LTB4, and COMP were downregulated significantly in the AKBA treated groups when compared to those in the Control group. On the other hand, GAG levels were significantly elevated. As a result of Western blot, the AKBA-treated groups significantly inhibited phosphorylation of MAPKs. In addition, significant downregulation of the expression of inflammatory cytokines and MMPs was found in the AKBA-treated groups. Conclusion : Our findings suggest that administration of AKBA could exert better chondroprotective and anti-inflammatory effects for MIA-induced osteoarthritis rats.