Browse > Article
http://dx.doi.org/10.5352/JLS.2019.29.4.436

Anti-inflammatory Activities of Ethanol Extracts from Leaf, Seed, and Seedpod of Nelumbo nucifera  

Lee, Eun-Joo (Department of Biological Sciences, Andong National University)
Seo, Yu-Mi (Department of Biological Sciences, Andong National University)
Kim, Yong-Hyun (Department of Biological Sciences, Andong National University)
Chung, Chungwook (Department of Biological Sciences, Andong National University)
Sung, Hwa-Jung (Department of Food and Nutrition, Andong National University)
Sohn, Ho-Yong (Department of Food and Nutrition, Andong National University)
Park, Jong-Yi (Gyeongbuk Institute for Bio Industry)
Kim, Jong-Sik (Department of Biological Sciences, Andong National University)
Publication Information
Journal of Life Science / v.29, no.4, 2019 , pp. 436-441 More about this Journal
Abstract
Nelumbo nucifera, also known as sacred lotus, has mainly been used as a food throughout the Asian countries. In the present study, we prepared ethanol extracts from leaf (NL), seed (NS), and seedpod (NSP) of Nelumbo nucifera and investigated their anti-inflammatory activities in mouse macrophage RAW 264.7 cells. To evaluate the anti-inflammatory activities of NL, NS, and NSP, nitric oxide (NO) production was measured in LPS-stimulated RAW 264.7 cells. NL, NS, and NSP significantly reduced NO production in a dose-dependent manner without affecting cell viabilities. NL, NS, and NSP dramatically decreased the protein expression of pro-inflammatory genes such as iNOS and COX-2. NL, NS, and NSP also suppressed phosphorylation of MAPKs and the nuclear translocation of $NF-{\kappa}B$ p65 indicating they have their anti-inflammatory activities via regulating mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B ($NF-{\kappa}B$) pathways. In addition, we analyzed the production of reactive oxygen species (ROS) by the treatment of NL, NS, and NSP. All extracts reduced ROS production in a dose-dependent manner. And also, they increased heme oxygenase-1 (HO-1) protein expression and the nuclear translocation of nuclear respiratory factor 2 (Nrf2). In conclusion, our results suggest that Nelumbo nucifera has its anti-inflammatory activity via regulating MAPKs, $NF-{\kappa}B$, and Nrf2/HO-1 pathways.
Keywords
Anti-inflammation; MAPK; Nelumbo nucifera; $NF-{\kappa}B$; Nrf2/HO-1;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Steiner, N., Balez, R., Karunaweera, N., Lind, J. M., Munch, G. and Ooi, L. 2016. Neuroprotection of Neuro2a cells and the cytokine suppressive and anti-inflammatory mode of action of resveratrol in activated RAW264.7 macrophages and C8-B4 microglia. Neurochem. Int. 95, 46-54.   DOI
2 Woo, J. H., Lee, J. H., Kim, H., Park, S. J., Joe, E. H. and Jou, I. 2015. Control of inflammatory responses: a new paradigm for the treatment of chronic neuronal diseases. Exp. Neurobiol. 24, 95-102.   DOI
3 Wynn, T. A. and Barron, L. 2010. Macrophages: master regulators of inflammation and fibrosis. Semin. Liver. Dis. 30, 245-257.   DOI
4 Yang, D., Xiao, C. X., Su, Z. H., Huang, M. W., Qin, M., Wu, W. J., Jia, W. W., Zhu, Y. Z., Hu, J. F. and Liu, X. H. 2017. (-)-7(S)-hydroxymatairesinol protects against tumor necrosis factor-${\alpha}$-mediated inflammation response in endothelial cells by blocking the MAPK/NF-${\kappa}B$ and activating Nrf2/HO-1. Phytomedicine 32, 15-23.   DOI
5 Chen, Y., Ji, N., Pan, S., Zhang, Z., Wang, R., Qiu, Y., Jin, M. and Kong, D. 2017. Roburic Acid suppresses NO and IL-6 production via targeting NF-${\kappa}B$ and MAPK pathway in RAW264.7 cells. Inflammation 40, 1959-1966.   DOI
6 Federico, A., Morgillo, F., Tuccillo, C., Ciardiello, F. and Loguercio, C. 2007. Chronic inflammation and oxidative stress in human carcinogenesis. Int. J. Cancer 121, 2381-2386.   DOI
7 Cho, B. O., Yin, H. H., Park, S. H., Byun, E. B., Ha, H. Y. and Jang, S. I. 2016. Anti-inflammatory activity of myricetin from Diospyros lotus through suppression of NF-${\kappa}B$ and STAT1 activation and Nrf2-mediated HO-1 induction in lipopolysaccharide-stimulated RAW264.7macrophages. Biosci. Biotechnol. Biochem. 80, 1520-1530.   DOI
8 Dou, W., Zhang, J., Sun, A., Zhang, E., Ding, L., Mukherjee, S., Wei, X., Chou, G., Wang, Z. T. and Mani, S. 2013. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-${\kappa}B$ signalling. Br. J. Nutr. 110, 599-608.   DOI
9 El Assar, M., Angulo, J. and Rodriguez-Manas, L. 2013. Oxidative stress and vascular inflammation in aging. Free Radic. Biol. Med. 65, 380-401.   DOI
10 Grivennikov, S. I., Greten, F. R. and Karin, M. 2010. Immunity, inflammation, and cancer. Cell 140, 883-899.   DOI
11 Guo, C., Yang, L., Luo, J., Zhang, C., Xia, Y., Ma, T. and Kong, L. 2016. Sophoraflavanone G from Sophora alopecuroides inhibits lipopolysaccharide-induced inflammation in RAW264.7 cells by targeting PI3K/Akt, JAK/STAT and Nrf2/HO-1 pathways. Int. Immunopharmacol. 38, 349-356.   DOI
12 Jiang, X. L., Wang, L., Wang, E. J., Zhang, G. L., Chen, B., Wang, M. K. and Li, F. 2018. Flavonoid glycosides and alkaloids from the embryos of Nelumbo nucifera seeds and their antioxidant activity. Fitoterapia 25, 184-190.
13 Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I. and Hamid, Q. A. 2004. New insights into atopic dermatitis. J. Clin. Invest. 113, 651-657.   DOI
14 Jin, S. W., Hwang, Y. P., Choi, C. Y., Kim, H. G., Kim, S. J., Kim, Y., Chung, Y. C., Lee, K. J., Jeong, T. C. and Jeong, H. G. 2017. Protective effect of rutaecarpine against t-BHP-induced hepatotoxicity by upregulating antioxidant enzymes via the CaMKII-Akt and Nrf2/ARE pathways. Food Chem. Toxicol. 100, 138-148.   DOI
15 Kaewkroek, K., Wattanapiromsakul, C. and Tewtrakul, S. 2010. Anti-inflammatory mechanisms of compounds from Curcuma mangga rhizomes using RAW264.7 macrophage cells. Nat. Prod. Commun. 5, 1547-1550.
16 Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y. P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L. M., Morris-Natschke, S. L. and Lee, K. H. 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg. Med. Chem. 13, 443-448.   DOI
17 Lim, K. H. and Staudt, L. M. 2013. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol. 5, a011247.   DOI
18 Mantovani, A. and Pierotti, M. A. 2008. Cancer and inflammation: a complex relationship. Cancer Lett. 267, 180-181.   DOI
19 Mukherjee, P. K., Mukherjee, D., Maji, A. K., Rai, S. and Heinrich, M. 2009. The sacred lotus (Nelumbo nucifera) - phytochemical and therapeutic profile. J. Pharm. Pharmacol. 61, 407-422.   DOI
20 Ono, Y., Hattori, E., Fukaya, Y., Imai, S. and Ohizumi, Y. 2006. Anti-obesity effect of Nelumbo nucifera leaves extract in mice and rats. J. Ethnopharmacol. 106, 238-44.   DOI
21 Park, G., Oh, D. S., Lee, M. G., Lee, C. E. and Kim, Y. U. 2016. 6-Shogaol, an active compound of ginger, alleviates allergic dermatitis-like skin lesions via cytokine inhibition by activating the Nrf2 pathway. Toxicol. Appl. Pharmacol. 310, 51-59.   DOI
22 Ahmed, S. M., Luo, L., Namani, A., Wang, X. J. and Tang, X. 2017. Nrf2 signaling pathway: Pivotal roles in inflammation. Biochim. Biophys. Acta. 1863, 585-597.   DOI
23 Arjun, P., Saranya Sivan, P. S., Mohana Priya, S., Krishnamoorthy, M. and Balasubramanian, K. 2012. Phytochemical analysis and anticancer activity of Nelumbo nucifera extracts. J. Acad. Indus. 1, 81-85.
24 Baskaran, R., Priya, L. B., Kalaiselvi, P., Poornima, P., Huang, C. Y. and Padma, V. V. 2017. Neferine from Nelumbo nucifera modulates oxidative stress and cytokines production during hypoxia in human peripheral blood mononuclear cells. Biomed. Pharmacother. 93, 730-736.   DOI