Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.12.1393

Phosphorylation Properties of Recombinant OsCPK11, a Calcium-dependent Protein Kinase from Rice  

Cho, Il-Sang (Somyong Girls' High School)
Lee, Su-Hee (Iwol Middle School)
Park, Chung-Mo (Department of Chemistry, Seoul National University)
Kim, Sung-Ha (Department of Biology Education, Korea National University of Education)
Publication Information
Journal of Life Science / v.27, no.12, 2017 , pp. 1393-1402 More about this Journal
Abstract
In plants, calcium ($Ca^{2+}$)-dependent protein kinases (CDPKs) are important sensors of $Ca^{2+}$ signals. Previous research demonstrated the expression of the OsCPK11 gene in various tissues at the transcription level, but its developmental and biochemical functions at the protein level were not determined. This study was aimed to identify biochemical characteristics of OsCPK11. GST- OsCPK11 was expressed in E. coli and used for an in vitro kinase assay. Biochemical analyses identified OsCPK11 as a CDPK. OsCPK11 autophosphorylated itself and transphosphorylated histone III-s and MBP as substrates in the presence of $Ca^{2+}$. The activity of the recombinant OsCPK11 was influenced by $Mg^{2+}$, with optimum activity detected at pH 7.0-7.5. OsCPK11 activity was not affected by $Mg^{2+}$, $Mn^{2+}$, or $Na^+$ in the presence of a high level of $Ca^{2+}$. Autophosphorylation of OsCPK11 decreased $Ca^{2+}$ sensitivity of OsCPK11. An anti-OsCPK11 rabbit antibody recognized 95.5 kD of GST-OsCPK11, as shown by an immunoblot analysis. These results shed light on the function of OsCPK11 in $Ca^{2+}$-mediated signaling in rice.
Keywords
Autophosphorylation; $Ca^{2+}-mediated$ signaling; CDPKs; GST-OsCPK11; transphosphorylation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Anil, V. S. and Rao, K. S. 2000. Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol. 123, 1301-1311.   DOI
2 Anil, V. S. and Rao, K. S. 2001. Purification and characterization of a $Ca^{2+}$-dependent protein kinase from sandalwood (Santalum album L.): evidence for $Ca^{2+}$-induced conformational changes. Phytochemistry 58, 203-212.   DOI
3 Arabidopsis Genome Initiative 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.   DOI
4 Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., Sato, M., Furuhashi, H., Mujin, T., Takaiwa, F., Wu, C., Tada, Y., Satozawa, T., Sakamoto, M. and Shimada, H. 2002. Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14, 619-628.   DOI
5 Ritchie, S. and Gilroy, S. 1998. Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol. 116, 765-776.   DOI
6 Roberts, D. M. and Harmon, A. C. 1992. Calcium-modulated proteins: targets of intracellular calcium signals in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 375-414.   DOI
7 Romeis, T., Piedras, P. and Jones, J. D. 2000. Resistance gene-dependent activation of a calcium-dependent protein kinase in the plant defense response. Plant Cell 12, 803-815.   DOI
8 Romeis, T., Ludwig, A. A., Martin, R. and Jones, J. D. 2001. Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J. 20, 5556-5567.   DOI
9 Rudd, J. J. and Franklin-Tong, V. E. 2001. Unravelling response-specificity in $Ca^{2+}$ signalling pathways in plant cells. New Phytol. 151,7-33.   DOI
10 Saha, P. and Singh, M. 1995. Characterization of a winged bean (Psophocarpus tetragonolobus) protein-kinase with calmodulin-like domain regulation by autophosphorylation. Biochem. J. 305, 205-210.   DOI
11 Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K. and Izui, K. 2000. Over-expression of a single $Ca^{2+}$-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23, 319-327.   DOI
12 Sanders, D., Brownlee, C., and Harper, J. F. 1999. Communicating with calcium. Plant Cell 11, 691-706.   DOI
13 Cho, I. S. 2010 Biochemical characterization of the recombinant OsCPK11, a calcium-dependent protein kinase from rice. Thesis for master's degree. Korea National University of Education, Chungbuk, Korea.
14 Sanders, D., Pelloux, J., Brownlee, C. and Harper, J. F. 2002. Calcium at the cross roads of signaling. Plant Cell 14, S401-S417.   DOI
15 See, Y. and Jackowski, G. 1989. Protein structure: A practical approach (Creighton, T. E. ed.). Oxford: IRL Press.
16 Asano, T., Tanaka, N., Yang, G., Hayashi, N. and Komatsu, S. 2005. Genome-wide identification of the rice calciumdependent protein kinase and its closely related kinase gene families: Comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol. 46, 356-366.   DOI
17 Chaudhuri, S., Seal, A. and Dasgupta, M. 1999. Autophosphorylation-dependent activation of a calcium-dependent protein kinase from ground nut. Plant Physiol. 120, 859-866.   DOI
18 Cheng, S. H., Willmann, M. R., Chen, H. C. and Sheen, J. 2002. Calcium signaling through protein kinases. The Arabidopsis calcium dependent protein kinase gene family. Plant Physiol. 129, 469-485.   DOI
19 Dasgupta, M. 1994. Characterization of a calcium-dependent protein kinase from Arachis hypogea (groundnut) seeds. Plant Physiol. 104, 961-969.   DOI
20 Dixit, A. K. and Jayabaskaran, C. 2012. Molecular cloning, soluble expression and characterization of autophosphorylation in recombinant calcium dependent protein kinase 1(CaCDPK1) from Cicer arietinum. Appl. Microbiol. Biotechnol. 97, 3429-3439.
21 Wernimont, A. K., Artz, J. D., Finerty, P. Jr., Lin, Y. H., Amani, M., Allali-Hassani, A., Senisterra, G., Vedadi, M., Tempel, W., Mackenzie, F., Chau, I., Lourido, S., Sibley, L. D. and Hui, R. 2010. Structures of apicomplexan calciumdependent protein kinases reveal mechanism of activation by calcium. Nat. Struct. Mol. Biol. 17, 596-601.   DOI
22 Szczegielniak, J., Klimecka, M., Liwosz, A., Ciesielski, A., Kaczanowski, S., Dobrowolska, G., Hormon, A. C. and Muszynka, G. 2005. A wound-responsive and phospholipid-regulated maize calcium-dependent protein kinase. Plant Physiol. 139, 970-983.
23 Urao, T., Katagiri, T., Mizoguchi, T., Yamaguchi-Shinozaki, K., Hayashida, N. and Shinozaki, K. 1994. Two genes that encode $Ca^{2+}$-dependent protein kinases are induced by drought and high-salt stresses in Arabidopsis thaliana. Mol. Gen. Genet. 244, 331-340.
24 Wernimont, A. K., Amani, M., Qiu, W., Pizarro, J. C., Artz, J. D., Lin, Y. H., Lew, J., Hutchinson, A. and Hui, R. 2011. Structures of parasitic CDPK domains point to a common mechanism of activation. Proteins 79, 803-820.   DOI
25 Ye, S., Wang, L., Xie, W., Wan, B., Li, X. and Lin, Y. 2009. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole life span and under phyto hormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol. Biol. 70, 311-325.   DOI
26 Zhang, M. and Yuan, T. 1998. Molecular mechanisms of calmodulin's functional versatility. Biochem. Cell Biol. 76, 313-323.   DOI
27 Evans, N H., McAinsh, M. R. and Hetherington, A. M. 2001. Calcium oscillations in higher plants. Curr. Opin. Plant Biol. 4, 415-420.   DOI
28 Ganguly, S. and Singh, M. 1999. Purification and characterization of a protein phosphatase from winged bean. Phytochemistry 52, 239-246.   DOI
29 Guo, Y. L. and Roux, S. J. 1990. Partial purification and characterization of a $Ca^{2+}$-dependent protein kinase from the green alga, Dunaliella salina. Plant Physiol. 94, 143-150.   DOI
30 Yoon, G. M., Cho, H. S., Ha, H. J., Liu, J. R. and Lee, H. S. 1999. Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol. Biol. 39, 991-1001.   DOI
31 Zhang, M., Liang, S. and Lu, Y. T. 2005. Cloning and functional characterization of NtCPK4, a new tobacco calciumdependent protein kinase. Biochim. Biophys. Acta 1729, 174-185.   DOI
32 Harper, J. F., Sussman, M. R., Schaller, G. E., Putnam-Evans, C., Charbonneau, H. and Harmon, A. C. 1991. A calciumdependent protein kinase with a regulatory domain similar to calmodulin. Science 252, 951-954.   DOI
33 Hanks, S. K. and Hunter, T. 1995. The eukaryotic protein kinase super family: kinase (catalytic) domain structure and classification. FASEB J. 9, 546-596.
34 Harmon, A. C., Yoo, B. C. and McCaffery, C. 1994. Pseudosubstrate inhibition of CDPK, a protein kinase with a calmodulin-like domain. Biochemistry 33, 7278-7287.   DOI
35 Harmon, A. C., Gribskov, M. and Harper, J. F. 2000. CDPKs: a kinase for every $Ca^{2+}$ signal? Trends Plant Sci. 5, 154-159.   DOI
36 Harper, J. F., Breton, G. and Harmon, A. 2004. Decoding $Ca^{2+}$ signals through plant protein kinases. Annu. Rev. Plant Physiol. Plant Mol. Biol. 55, 263-288.   DOI
37 Hrabak, E. M., Chan, C. W., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., Kudla, J., Luan, S., Nimmo, H. G., Sussman, M. R., Thomas, M., Walker-Simmons, K., Zhu, J. K. and Harmon, A. C. 2003. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol. 132, 666-680.   DOI
38 Zhao, Y., Pokutta, S., Maurer, P., Lindt, M., Franklin, R. M. and Kappes, B. 1994. Calcium-binding properties of a calcium-dependent protein kinases from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation. Biochemistry 33, 3714-3721.   DOI
39 Sambrook, J. and Russell, D. W. 2001. Molecular cloning: a laboratory manual (3rd ed.). NY: CSHL press.
40 Hong, Y., Takano, M., Liu, C. M., Gasch, A., Chye, M. L. and Chua, N. H. 1996. Expression of three members of the calcium-dependent protein kinase gene family in Arabidopsis thaliana. Plant Mol. Biol. 30, 1259-1275.   DOI
41 Huang, Q. S., Wang, H. Y., Gao, P., Wang, G. Y. and Xia, G. X. 2008. Cloning and characterization of a calcium dependent protein kinase gene associated with cotton fiber development. Plant Cell Rep. 27, 1869-875.   DOI
42 Johnson, D. R., Bhatnagar, R. S., Knoll, L. J. and Gordon, J. I. 1994. Genetic and biochemical studies of protein Nmyristoylation. Annu. Rev. Biochem. 63, 869-914.   DOI
43 Martin, M. L. and Busconi, L. 2000. Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J. 24, 429-435.   DOI
44 Komatsu, S., Yang, G., Khan, M., Onodera, H., Toki, S. and Yamaguchi, M. 2007. Over-expression of calcium-dependent protein kinase 13 and calreticulin interacting protein 1 confers cold tolerance on rice plants. Mol. Genet. Genomics 277, 713-723.   DOI
45 Lachaud, C., Prigent, E., Thuleau, P., Grat, S., Da Silva, D., Brière, C., Mazars, C. and Cotelle, V. 2013. 14-3-3-regulated $Ca^{2+}$-dependent protein kinase CPK3 is required for sphingolipid-induced cell death in Arabidopsis. Cell Death Differ. 20, 209-217.   DOI
46 Lee, J. Y., Yoo, B. C. and Harmon, A. C. 1998. Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. Biochemistry 37, 6801-6809.   DOI
47 Lee, S. H. 2009. Functional characterization of OsCPK11, a calcium-dependent protein kinase gene from rice and its cDNA cloning. Thesis for master's degree. Korea National University of Education, Chungbuk, Korea.
48 Liese, A and Romeis, T. 2013. Biochemical regulation of in vivo function of plant calcium-dependent protein kinases (CDPK). Biochim. Biophys. Acta. 1833, 1582-1589.   DOI
49 Millaway, R. and Wiersholm, L. 1979. Calcium and metabolic disorders. Commun. Soil Sci. Plant Anal. 10, 1-28.   DOI
50 Reddy, V. S. and Reddy, A. S. 2004. Proteomics of calcium-signaling components in plants. Phytochemistry 65, 1745-1776.   DOI
51 Klimecka, M. and Muszynska, G. 2007. Structure and functions of plant calcium-dependent protein kinases. Acta Biochim. Pol. 54, 219-233.