• Title/Summary/Keyword: Protein and energy metabolism

Search Result 332, Processing Time 0.027 seconds

The Effect of Adiponectin on the Regulation of Filaggrin Expression in Normal Human Epidermal Keratinocytes

  • Choi, Sun Young;Kim, Min Jeong;Ahn, Ga Ram;Park, Kui Young;Lee, Mi-Kyung;Seo, Seong Jun
    • Annals of dermatology
    • /
    • v.30 no.6
    • /
    • pp.645-652
    • /
    • 2018
  • Background: Adiponectin, an adipokine secreted from adipocytes, affects energy metabolism and also shows anti-diabetic and anti-inflammatory properties. Recent studies have reported that adiponectin plays a role in regulating skin inflammation. Objective: This study aimed to investigate the effect of adiponectin on the expression of filaggrin (FLG) in normal human epidermal keratinocytes (NHEKs). Methods: NHEKs were serum-starved for 6h before being treated with adiponectin. Afterward, cell viability was assessed by MTT assay. We also treated with calcium, interleukin (IL)-4, and IL-13 to provide positive and negative comparative controls, respectively. Gene mRNA expression was quantified using real time reverse transcription polymerase chain reaction, and protein expression was evaluated using Western blot. To evaluate the relationship among mitogen-activated protein kinases (MAPKs), activator protein 1 (AP-1), and FLG, we also treated cells with inhibitors for MAPKs JNK, p38, and ERK1/2. Results: FLG and FLG-2 mRNA expression in NHEKs significantly increased after treatment with $10{\mu}g/ml$ adiponectin. Adiponectin also restored FLG and FLG-2 mRNA expression that was otherwise inhibited by treatment with IL-4 and IL-13. Adiponectin induced FLG expression via AP-1 and MAPK signaling. Conclusion: Adiponectin positively regulated the expression of FLG and could be useful as a therapeutic agent to control diseases related to disrupted skin barrier function.

Effects of Two Halophytic Plants (Kochia and Atriplex) on Digestibility, Fermentation and Protein Synthesis by Ruminal Microbes Maintained in Continuous Culture

  • Riasi, A.;Mesgaran, M. Danesh;Stern, M.D.;Moreno, M.J. Ruiz
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.642-647
    • /
    • 2012
  • Eight continuous culture fermenters were used in a completely randomized design to evaluate various nutritional values of Kochia (Kochia scoparia) compared with Atriplex (Atriplex dimorphostegia). Dried and pelleted samples (leaves and stems) provided substrate for metabolism by ruminal microbes maintained in a continuous culture fermentation system. Results indicated that there were no differences (p>0.05) in dry matter (DM) and crude protein (CP) digestibility between the two halophytic plants. Atriplex had higher (p<0.05) organic matter (OM) digestibility compared with Kochia. Neutral detergent fiber (aNDF) digestibility of Atriplex (411 g/kg) was higher (p<0.05) than that of Kochia (348 g/kg), however acid detergent fiber (ADF) digestibility was higher (p<0.05) in Kochia compared with Atriplex (406 vs. 234 g/kg). There were no differences (p>0.05) between the two halophytic plants in molar proportion of acetate and propionate, but the concentration of butyrate and valerate in Kochia were about two fold of Atriplex (p<0.05). When Kochia provided substrate to the microbes, protein synthesis was higher (p<0.05) compared with feeding Atriplex (5.96 vs. 4.85 g N/kg of OM truly digested). It was concluded that Kochia scoparia and Atriplex dimorphostegia had similar digestibility of DM and CP. It appears that these halophytic plants may not have enough digestible energy for high producing ruminants.

Metabolic Elasticity and Induction of Heat Shock Protein 70 in Labeo rohita Acclimated to Three Temperatures

  • Das, T.;Pal, A.K.;Chakraborty, S.K.;Manush, S.M.;Chatterjee, N.;Apte, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.7
    • /
    • pp.1033-1039
    • /
    • 2006
  • The metabolic response of Labeo rohita to thermal acclimation was assessed. Advanced fingerlings of L. rohita (average weight $31{\pm}1.4g$) were acclimated to 31, 33 and $36^{\circ}C$ compared with ambient temperatures ($26^{\circ}C$) for 30 days and different enzymes associated with stress response were estimated. Glycolytic enzyme-Lactate dehydrogenase, (LDH, E.C.1.1.1.27), TCA cycle enzyme-Malate dehydrogenase (MDH, E.C.1.1.1.37), Protein metabolizing enzymes-Aspartate amino transferase (AST, E.C.2.6.1.1) and Alanine amino transferase (ALT, E.C.2.6.1.2) of liver, gill and muscle, Gluconeogenic enzymes-Fructose 1,6 Bi phosphatase (FBPase, E.C. 3.1.3.11) and Glucose 6 phosphatase (G6Pase, E.C. 3.1.3.9) of liver and kidney were significantly (p<0.05) different with increasing acclimation temperatures. Heat Shock Protein-70 (HSP-70) was expressed in increasing intensity at 31, 33 and $36^{\circ}C$ but was not expressed at $26^{\circ}C$. Results suggest that higher acclimation temperatures enhance metabolism and L. rohita maintains homeostasis between $26-36^{\circ}C$ via an acclimation episode. Such adaptation appears to be facilitated by resorting to gluconeogenic and glycogenolytic pathways for energy mobilization and induction of HSPs.

Effects of Dietary Cellulose on the Basal Endogenous Loss of Phosphorus in Growing Pigs

  • Son, A.R.;Kim, B.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.3
    • /
    • pp.369-373
    • /
    • 2015
  • An experiment was conducted to determine the effect of cellulose concentration in diets containing no phosphorus (P) on the basal endogenous loss (BEL) of P in growing pigs. Twelve barrows (an initial mean body weight = $49.6{\pm}3.2kg$) were individually housed in metabolism crates. Pigs were allotted to 4 experimental diets according to a cross-over design with 12 animals and 2 periods. Four P-free diets were mainly based on corn starch, sucrose, and gelatin, and were formulated to contain 0%, 4%, 8%, or 12% cellulose. Each period consisted of a 5-d adaptation and a 5-d collection period. The marker-to-marker method was used for fecal collection. The feed intake (p<0.05, linear and quadratic) and dry feces output (p<0.01, linear and quadratic) were increased with increasing dietary cellulose concentration. However, P concentration in the feces was decreased (p<0.01, linear and quadratic) with increasing dietary cellulose concentration. There was no significant difference in total P output and the BEL of P as mg per kg DMI (ranging from 157 to 214 mg/kg of dry matter intake) among experimental diets. However, values for the apparent total tract digestibility of energy, dry matter, organic matter, crude protein, and calcium were linearly decreased (p<0.01) with increasing cellulose concentration in the diet. In conclusion, dietary cellulose affected the amount of feces and digestibility of energy and nutrients, but did not affect the endogenous loss of P.

Ceramide and Sphingosine 1-Phosphate in Liver Diseases

  • Park, Woo-Jae;Song, Jae-Hwi;Kim, Goon-Tae;Park, Tae-Sik
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • The liver is an important organ in the regulation of glucose and lipid metabolism. It is responsible for systemic energy homeostasis. When energy need exceeds the storage capacity in the liver, fatty acids are shunted into nonoxidative sphingolipid biosynthesis, which increases the level of cellular ceramides. Accumulation of ceramides alters substrate utilization from glucose to lipids, activates triglyceride storage, and results in the development of both insulin resistance and hepatosteatosis, increasing the likelihood of major metabolic diseases. Another sphingolipid metabolite, sphingosine 1-phosphate (S1P) is a bioactive signaling molecule that acts via S1P-specific G protein coupled receptors. It regulates many cellular and physiological events. Since an increase in plasma S1P is associated with obesity, it seems reasonable that recent studies have provided evidence that S1P is linked to lipid pathophysiology, including hepatosteatosis and fibrosis. Herein, we review recent findings on ceramides and S1P in obesity-mediated liver diseases and the therapeutic potential of these sphingolipid metabolites.

A Study of Protein Nutritional Status and Bone Metabolism of Postmenopausal Vegetarian Women (채식을 하는 폐경 후 여성의 단백질 영양상태와 골대사)

  • 김미현;승정자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.4
    • /
    • pp.608-613
    • /
    • 2003
  • Recently, interests in the influences of vegetarian diet on bone mineral density after menopause have been rapidly increased. The purpose of this study was to compare the protein nutritional status and bone mineral density of postmenopausal vegetarian women with that of the omnivores. Vegetarian (n=38, seven day adventists) were chosen from the subjects in previous study, and the subjects were matched with omnivores counterparts with respect to age and BMI. Anthropometric measurements, dietary intakes, and bone mineral density (BMD) were taken. The bone metabolism related marker including urinary deoxypyridinoline and urinary pH, and serum protein and albumin concentrations were evaluated. The average age of vegetarians and omnivores were 60.7 yrs and 60.5 yrs, respectively md, there was no significant difference. The mean daily energy intake of vegetarians and omnivores were 1518.5 ㎉ (82.7% of RDA) and 1355.5 ㎉ (72.6% of RDA), respectively. The mean calcium intake of vegetarians (492.6 mg, 70.3% of RDA) was not significantly different from that of omnivores (436.6 mg, 62.3% of RDA). There was no significant difference in BMDs of spine and femoral neck between vegetarians and omnivores. Urinary deoxypyridinoline (DPD) level was not significantly different. In the vegetarians, the intakes of total protein (p<0.05) and plant protein (p<0.05) had significant negative correlations with urinary DPD. In the omnivores, serum albumin showed significant positive correlations with urinary DPD (p<0.05). In conclusion, we can not find the beneficial roles of vegetarian diet on bone mineral metabolism. For the postmenopausal vegetarian woman, protein intake would be an important factor to promote skeletal health.

Restriction of Metabolizable Energy in Broiler Growers and Its Impact on Grower and Breeder Performance

  • Sunder, G. Skyam;Kumar, Ch. Vijaya;Panda, A.K.;Raju, M.V.L.N.;Rao, S.V. Rama;Gopinath, N.C.S.;Reddy, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1258-1265
    • /
    • 2007
  • Metabolizable energy (ME) required for basal metabolism, activity and growth was considered as the criterion for targeting specific increases in body weight (100 g/week) of broiler chicks during the grower phase (5-20 weeks) and its impact was evaluated on breeder performance. Broiler female chicks (460) from a synthetic dam line were randomly distributed to 4 test groups with 23 replicates of 5 birds each and housed in cages. The first group (ME-100) was offered a calculated amount of ME by providing a measured quantity of grower diet (160 g protein and 2,600 kcal ME/kg) which increased with age and weight gain (133-294 kcal/bird/day). The other three groups were offered 10 or 20% less ME (ME-90 and ME-80, respectively) and 10% excess ME (ME-110) over the control group (ME-100). From 21 weeks of age, a single breeder diet (170 g protein and 2,600 kcal ME/kg) was uniformly fed to all groups and the impact of grower ME restriction on breeder performance evaluated up to 58 weeks. The targeted body weight gain of 1,600 g in a 16-week period was achieved by pullets of the ME-100 group almost one week earlier by gaining 8.7 g more weight per week. However, pullets in the ME-90 group gained 1,571 g during the same period, which was closer to the targeted weight. At 20 weeks of age, the conversion efficiency of feed (5.21-5.37), ME (13.9-14.1 kcal/g weight gain) and protein (0.847-0.871 g/g weight gain), eviscerated meat yield, giblet and tibia weights were not influenced by ME restriction, but the weights of abdominal fat and liver were higher with increased ME intake. Reduction of ME by 10% in the grower period significantly delayed sexual maturity (169.3 d), but increased egg production (152.5 /bird) with better persistency. Improved conversion efficiency of feed, ME and protein per g egg content were also observed in this group up to 56 weeks. The fertility and hatchability at 58 weeks of age were higher in the ME-90 group compared to the control and 10% excess ME feeding. In conclusion, the present study revealed the possibility of achieving targeted weight gain in broiler growers by feeding measured quantities of ME during the rearing period with consequential benefits in breeder performance.

Effect of Different Source of Energy on Urea Molasses Mineral Block Intake, Nutrient Utilization, Rumen Fermentation Pattern and Blood Profile in Murrah Buffaloes (Bubalus bubalis)

  • Hosamani, S.V.;Mehra, U.R.;Dass, R.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.6
    • /
    • pp.818-822
    • /
    • 2003
  • In order to investigate the effect of different sources of energy on intake and nutrient utilization from urea molasses mineral block (UMMB), rumen fermentation pattern and blood biochemical constituents, 18 intact and 9 rumen fistulated male Murrah buffaloes aged about 3 years and average weight 310.8 kg were randomly allocated into three groups of 9 animals in each, thus each group having 6 intact and three rumen fistulated buffaloes. All animals were fed individually for 90 days. All buffaloes were offered wheat straw as basal roughage and urea molasses mineral block for free choice of licking. Three different energy sources viz., barley grain, (group I), maize grain (group II) and jowar green (group III) were offered to meet their nutrient requirement as per Kearl (1982). At the end of feeding trial, a metabolism trial of 7 days duration was carried out on intact animals to determine the digestibility of nutrients. Rumen fermentation studies were carried out on rumen fistulated animals. After the metabolism trial blood was collected from intact animals to estimate the nitrogen constituents in blood serum of animals fed on different sources of energy. Results revealed no significant difference in the intake of UMMB in three groups. Similarly, the intake of DM (kg), DCP (g) and TDN (kg) per day was similar in three groups statistically. The apparent digestibility of dry matter (DM), organic matter (OM), ether extract (EE) and nitrogen free extract (NFE) was significantly (p<0.05) more in group II than group III, whereas the digestibility of DM, OM and NFE was similar in group I and II. The digestibility of crude fiber (CF) and all the fiber fractions i.e. NDF, ADF, cellulose and hemicellulose was alike in 3 groups. Nitrogen balance (g/d) was significantly (p<0.05) more in group III as compared to group I and II, which were alike statistically, though the N intake (g/d) was similar in 3 groups but N balance (g/d) was significantly (p<0.05) less in group III as compared to other 2 groups. Significantly (p<0.05) higher concentration of total volatile fatty acids (TVFA), total nitrogen (TN) and its fractions were observed in group I and II as compared to group III. There was no effect on rumen pH, rumen volume and digesta flow rate due to different sources of energy in 3 groups. Similarly the blood serum biochemical parameters (NH3-N, urea-N and total protein) were statistically identical in 3 groups.

Dexamethasone enhances glucose uptake by SGLT1 and GLUT1 and boosts ATP generation through the PPP-TCA cycle in bovine neutrophils

  • Wang, Xinbo;Tang, Mingyu;Zhang, Yuming;Li, Yansong;Mao, Jingdong;Deng, Qinghua;Li, Shusen;Jia, Zhenwei;Du, Liyin
    • Journal of Veterinary Science
    • /
    • v.23 no.5
    • /
    • pp.76.1-76.14
    • /
    • 2022
  • Background: Clinical dexamethasone (DEX) treatment or stress in bovines results in extensive physiological changes with prominent hyperglycemia and neutrophils dysfunction. Objectives: To elucidate the effects of DEX treatment in vivo on cellular energy status and the underlying mechanism in circulating neutrophils. Methods: We selected eight-month-old male bovines and injected DEX for 3 consecutive days (1 time/d). The levels of glucose, total protein (TP), total cholesterol (TC), and the proinflammatory cytokines interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α in blood were examined, and we then detected glycogen and adenosine triphosphate (ATP) content, phosphofructosekinase-1 (PFK1) and glucose-6-phosphate dehydrogenase (G6PDH) activity, glucose transporter (GLUT)1, GLUT4, sodium/glucose cotransporter (SGLT)1 and citrate synthase (CS) protein expression and autophagy levels in circulating neutrophils. Results: DEX injection markedly increased blood glucose, TP and TC levels, the Ca2+/P5+ ratio and the neutrophil/lymphocyte ratio and significantly decreased blood IL-1β, IL-6 and TNF-α levels. Particularly in neutrophils, DEX injection inhibited p65-NFκB activation and elevated glycogen and ATP contents and SGLT1, GLUT1 and GR expression while inhibiting PFK1 activity, enhancing G6PDH activity and CS expression and lowering cell autophagy levels. Conclusions: DEX induced neutrophils glucose uptake by enhancing SGLT1 and GLUT1 expression and the transformation of energy metabolism from glycolysis to pentose phosphate pathway (PPP)-tricarboxylic acid (TCA) cycle. This finding gives us a new perspective on deeper understanding of clinical anti-inflammatory effects of DEX on bovine.

The effect of dietary asparagine supplementation on energy metabolism in liver of weaning pigs when challenged with lipopolysaccharide

  • Kang, Ping;Liu, Yulan;Zhu, Huiling;Zhang, Jing;Shi, Haifeng;Li, Shuang;Pi, Dinan;Leng, Weibo;Wang, Xiuying;Wu, Huanting;Hou, Yongqing
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.4
    • /
    • pp.548-555
    • /
    • 2018
  • Objective: This experiment was conducted to investigate whether asparagine (Asn) could improve liver energy status in weaning pigs when challenged with lipopolysaccharide. Methods: Forty-eight weaned pigs ($Duroc{\times}Large\;White{\times}Landrace$, $8.12{\pm}0.56kg$) were assigned to four treatments: i) CTRL, piglets received a control diet and injected with sterile 0.9% NaCl solution; ii) lipopolysaccharide challenged control (LPSCC), piglets received the same control diet and injected with Escherichia coli LPS; iii) lipopolysaccharide (LPS)+0.5% Asn, piglets received a 0.5% Asn diet and injected with LPS; and iv) LPS+1.0% Asn, piglets received a 1.0% Asn diet and injected with LPS. All piglets were fed the experimental diets for 19 d. On d 20, the pigs were injected intraperitoneally with Escherichia coli LPS at $100{\mu}g/kg$ body weights or the same volume of 0.9% NaCl solution based on the assigned treatments. Then the pigs were slaughtered at 4 h and 24 h after LPS or saline injection, and the liver samples were collected. Results: At 24 h after LPS challenge, dietary supplementation with 0.5% Asn increased ATP concentration (quadratic, p<0.05), and had a tendency to increase adenylate energy charges and reduce AMP/ATP ratio (quadratic, p<0.1) in liver. In addition, Asn increased the liver mRNA expression of pyruvate kinase, pyruvate dehydrogenase, citrate synthase, and isocitrate dehydrogenase ${\beta}$ (linear, p<0.05; quadratic, p<0.05), and had a tendency to increase the mRNA expression of hexokinase 2 (linear, p<0.1). Moreover, Asn increased liver phosphorylated AMP-activated protein kinase (pAMPK)/total AMP-activated protein kinase (tAMPK) ratio (linear, p<0.05; quadratic, p<0.05). However, at 4 h after LPS challenge, Asn supplementation had no effect on these parameters. Conclusion: The present study indicated that Asn could improve the energy metabolism in injured liver at the late stage of LPS challenge.