Browse > Article
http://dx.doi.org/10.5713/ajas.2006.1033

Metabolic Elasticity and Induction of Heat Shock Protein 70 in Labeo rohita Acclimated to Three Temperatures  

Das, T. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows)
Pal, A.K. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows)
Chakraborty, S.K. (Department of Zoology, Vidyasagar University)
Manush, S.M. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows)
Chatterjee, N. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows)
Apte, S.K. (Moecular Biology Division, Bhabha Atomic Research Centre)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.19, no.7, 2006 , pp. 1033-1039 More about this Journal
Abstract
The metabolic response of Labeo rohita to thermal acclimation was assessed. Advanced fingerlings of L. rohita (average weight $31{\pm}1.4g$) were acclimated to 31, 33 and $36^{\circ}C$ compared with ambient temperatures ($26^{\circ}C$) for 30 days and different enzymes associated with stress response were estimated. Glycolytic enzyme-Lactate dehydrogenase, (LDH, E.C.1.1.1.27), TCA cycle enzyme-Malate dehydrogenase (MDH, E.C.1.1.1.37), Protein metabolizing enzymes-Aspartate amino transferase (AST, E.C.2.6.1.1) and Alanine amino transferase (ALT, E.C.2.6.1.2) of liver, gill and muscle, Gluconeogenic enzymes-Fructose 1,6 Bi phosphatase (FBPase, E.C. 3.1.3.11) and Glucose 6 phosphatase (G6Pase, E.C. 3.1.3.9) of liver and kidney were significantly (p<0.05) different with increasing acclimation temperatures. Heat Shock Protein-70 (HSP-70) was expressed in increasing intensity at 31, 33 and $36^{\circ}C$ but was not expressed at $26^{\circ}C$. Results suggest that higher acclimation temperatures enhance metabolism and L. rohita maintains homeostasis between $26-36^{\circ}C$ via an acclimation episode. Such adaptation appears to be facilitated by resorting to gluconeogenic and glycogenolytic pathways for energy mobilization and induction of HSPs.
Keywords
Thermal Acclimation; Labeo rohita; Metabolic Activities; Heat Shock Protein 70;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Bennett, W. A. and T. L. Beitinger. 1997. Temperature tolerance of the sheepshead minnow, Cyprinodon variegates. Copeia. 1997:77-87
2 Feder, M. E. and G. E. Hofmann. 1999. Heat shock proteins, molecular chaperons, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243-282   DOI   ScienceOn
3 Forsyth, R. B., E. P. M. Candido, S. L. Babich and G. K. Iwama. 1997. Stress protein expression in Coho salmon with bacterial kidney disease. J. Aqua. Anim. Health. 9:18-25   DOI   ScienceOn
4 Kutty, M. N. 1981. Energy metabolism in mullet. In: Aquaculture of grey mullets. (Ed. O. H. Oven). pp. Cambridge University Press, London, pp. 219-253
5 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685   DOI   ScienceOn
6 Manush, S. M., A. K. Pal, N. Chatterjee, T. Das and S. C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. J. Therm. Biol. 29:15-19   DOI   ScienceOn
7 Minier, C., V. Borghi, M. N. Moore and C. Porte. 2000. Seasonal variation of MXR and stress proteins in the common mussels, Mytillus galloprovincialis. Aquat. Toxicol. 50:167-176   DOI   ScienceOn
8 Ming, Y. C., S. Y. Huang, E. C. Lin, T. H. Hseu and W. C. Lee. 2003. Association of a Single Nucleotide Polymorphism in the 5'-Flanking Region of Porcine HSP70.2 with Backfat Thickness in Duroc Breed. Asian-Aust. J. Anim. Sci. 16(1):100-103   DOI
9 Paromita, D., G. Akhil and K. M. Sanjib. 2005. Heat shock protein 70 expression in different tissues of Cirrhinus mrigala (Ham.) following heat stress. Agric. Res. 36(6):525-529
10 Renukardhyay, K. M. and T. J. Varghese. 1986. Protein requirement of the carps Catla catla and Labeo rohita (Ham.). Proc. Indian Acad. Sci. (Anim. Sci.), 95:103-107
11 Schlesinger, M. J., M. Ashburner and Tissieres. 1982. Heat Shock Proteins from Bacteria to Man, Cold Springe Harbor Lab Press, NY. pp. 243-251
12 Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceed. Nat. Acad. Sci. USA. 76(9):4350-4354
13 Palmisano, N. A., J. R. Winton and W. W. Dickhoff. 2000. Tissuesspecific induction of HSP 90 mRNA and plasma cortisol response in Chinook Salmon following heat shock, sea water challenge and handling challenge. Mar. Biotechnol. 2:329-338
14 Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. Chatterjee and S. C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four different temperatures. J. Therm. Biol. 29:157-163   DOI   ScienceOn
15 Chung, M. K., J. H. Choi, Y. K. Chung and K. M. Chee. 2005. Effects of dietary vitamins C and e on eggshell quality of broiler breeder hens exposed to heat stress. Asian-Aust. J. Anim. Sci. 18(4):545-551   DOI
16 Dietz, T. J. and G. N. Somero. 1992. The threshold induction temperature of the 90 kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (Gillichhys). In proceedings of National Academy of Science. USA. 89:3389- 3393
17 Marjoic, A. S. 1964. Methods in Enzymology. Vol. II. (S. P. Colowick and N. O. Kaplan). Academic Press Inc, New York, p. 541
18 Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. P. Sahu and S. C. Mukherjee. 2005. Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton, 1822) acclimated to four temperatures Journal of Thermal Biology. 30(5):378-383   DOI   ScienceOn
19 Lowry, O. H., N. J. Ronebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with Folin Phenol Reagent. J. Biol. Chem. 193:265-276
20 Ochoa, 1955. Malic dehydrogenase and 'malic' enzyme. In: Methods of enzymology (Ed. I. S. P. Coloric and Kaplan). Academic Press, New York, pp. 735-745
21 Freeland, R. A. and A. L. Harper. 1959. The study of metabolic pathway by means of adaptation. J. Biol. Chem. 234:1350-1354
22 Wotton, I. D. P. 1964. Microanalysis. In Medical Biochemistry. J. A. Churchill (4th Eds).London, pp. 101-107
23 Hutchinson, K. A., K. D. Ditmar, M. J. Czar and W. B. Pratt. 1994. Proof that HSP70 is required for assembly of glucocorticoid receptor into a heterocomplex with HSP90. J. Biol. Chem. 269:5043-5049
24 Iwama, G. K., M. M. Vijayan, R. B. Forsyth and P. A. Ackerman. 1999. Heat shock proteins and physiological stress in fish. Am. Zool. 39:901-909   DOI
25 Chatterjee, N., A. K. Pal, S. M. Manush, T. Das and S. C. Mukherjee. 2004. Thermal tolerance and metabolic status of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. J. Therm. Biol. 29:265-270   DOI   ScienceOn
26 Currie, S., C. D. Moyes and B. L. Tufts. 2000. The effects of heat shock and acclimation temperature on HSP70 and HSP30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J. Fish. Biol. 56:398-408   DOI
27 Beitinger, T. L., W. A. Bennett and R. W. McCauley. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Env. Biol. Fish. 58: 237-275   DOI   ScienceOn
28 Guderley, H. 1990. Functional significance of metabolic responses to thermal acclimation in fish muscle. Am. J. Physiol. 259:245-252
29 Vijayan, M. M., C. Pereira, E. G. Grau and G. K. Iwama. 1997. Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp. Biochem. Physiol. 116C:89-95
30 Feige, U., R. Morimoto, I. Yahara and B. S. Polla. 1996. Stressinducible cellular responses Birkhauser-Verlag. Basel, Switzerland, p. 492
31 Kita, J., S. Tsuchida and T. Setoguma. 1996. Temperature preferance and tolerance, and oxygen consumption of the marbled rock-fish, Sebastiscus marmoratus. Mar. Biol. 125:467-471
32 Baroudy, E. and J. M. Elliott. 1994. Tolerance of parr of Arctic charr, Salvelinus alpinus to reduce dissolved oxygen concentrations. J. Fish. Biol. 44:736-738   DOI
33 Wrobleuiski, L. and J. S. Ladue. 1955. LDH activity in blood. Proc. Soc. Exp. Biol. Med. 90:210-213
34 Blatter, D. P., F. Garner, K. Van Slyke and A. Bradley. 1972. Quantitative electrophoresis in polyacrylamide gels of 2-40%. J. Chromato. 64:147-155   DOI   ScienceOn
35 Milligan, C. L. and S. S. Girard. 1993. Lactate metabolism in rainbow trout. J. Experi. Biol. 180:175-193
36 Suarez, R. K. and T. P. Mommsen. 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65:1869-1882   DOI
37 Werner, I., C. S. Koger, J. T. Hamm and D. E. Hinton. 2001. Ontogeny of the Heat Shock Protein, HSP70 and HSP 60, Response and Development effects of Heat- Shock in the Teleost, Medaka (Oryzias latipes). Environ. Sci. 8:13-29
38 Wedemeyer, G. R., F. P. Meyer and L. Smith. 1999. Environmental stress and Fish diseases. Narendra Publ. House, Delhi, India, p. 107
39 Zulkifli, I., S. A. Mysahra and L. Z. Jin. 2004. Dietary supplementation of betaine (betafin) and response to high temperature stress in male broiler chickens. Asian-Aust. J. Anim. Sci. 17(2):244-249   DOI
40 Sanders, B. M. 1993. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 23:49-75   DOI
41 Hayford, Y. T., K. Sato, K. Takahashi, M. Toyomizu and Y. Akiba. 2002. Effects of Heat Stress and Dietary Tryptophan on Performance and Plasma Amino Acid Concentrations of Broiler Chickens. Asian-Aust. J. Anim. Sci. 15(2):247-253   DOI
42 Sudarman, A. and T. Ito. 2000. Heat Production and Thermoregulatory Responses of Sheep Fed Different Roughage Proportion Diets and Intake Levels When Exposed to a High Ambient Temperature. Asian-Aust. J. Anim. Sci. 13(5):625-629   DOI
43 Vijayan, M. M., J. S. Ballantyne and J. F. Leatherland. 1990. High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquac. 88:371-381   DOI   ScienceOn
44 Moon, T. W. and G. D. Foster. 1995. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Metabolic and Adaptational Biochemistry. (Ed. P. W. Hochachka and T. P. Mommsen). Amsterdam, Elsevier Science, pp. 65-100
45 Pal, A. K. and S. C. Mukherjee. 2003. Heat shock Protein Expression in Fish and Shellfish: Environmental Perspectives and Health Management. In: Biotechnology in Environemntal Management. (T. Chakrabrti, T. K. Ghosh and G. Tripathi). APH Publishers, New Delhi, pp. 95-116
46 Iwama, G. K., P. T. Thomas, R. B. Forsyth and M. M. Vijayan. 1998. Heat shock protein expression in fish. Rev. Fish Biol. Fish. 8:1-22   DOI   ScienceOn