DOI QR코드

DOI QR Code

Metabolic Elasticity and Induction of Heat Shock Protein 70 in Labeo rohita Acclimated to Three Temperatures

  • Das, T. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows) ;
  • Pal, A.K. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows) ;
  • Chakraborty, S.K. (Department of Zoology, Vidyasagar University) ;
  • Manush, S.M. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows) ;
  • Chatterjee, N. (Fish Biochemistry Laboratory, Central Institute of Fisheries Education, Fisheries University Road Seven Bungalows) ;
  • Apte, S.K. (Moecular Biology Division, Bhabha Atomic Research Centre)
  • Received : 2005.04.11
  • Accepted : 2005.09.20
  • Published : 2006.07.01

Abstract

The metabolic response of Labeo rohita to thermal acclimation was assessed. Advanced fingerlings of L. rohita (average weight $31{\pm}1.4g$) were acclimated to 31, 33 and $36^{\circ}C$ compared with ambient temperatures ($26^{\circ}C$) for 30 days and different enzymes associated with stress response were estimated. Glycolytic enzyme-Lactate dehydrogenase, (LDH, E.C.1.1.1.27), TCA cycle enzyme-Malate dehydrogenase (MDH, E.C.1.1.1.37), Protein metabolizing enzymes-Aspartate amino transferase (AST, E.C.2.6.1.1) and Alanine amino transferase (ALT, E.C.2.6.1.2) of liver, gill and muscle, Gluconeogenic enzymes-Fructose 1,6 Bi phosphatase (FBPase, E.C. 3.1.3.11) and Glucose 6 phosphatase (G6Pase, E.C. 3.1.3.9) of liver and kidney were significantly (p<0.05) different with increasing acclimation temperatures. Heat Shock Protein-70 (HSP-70) was expressed in increasing intensity at 31, 33 and $36^{\circ}C$ but was not expressed at $26^{\circ}C$. Results suggest that higher acclimation temperatures enhance metabolism and L. rohita maintains homeostasis between $26-36^{\circ}C$ via an acclimation episode. Such adaptation appears to be facilitated by resorting to gluconeogenic and glycogenolytic pathways for energy mobilization and induction of HSPs.

Keywords

References

  1. Baroudy, E. and J. M. Elliott. 1994. Tolerance of parr of Arctic charr, Salvelinus alpinus to reduce dissolved oxygen concentrations. J. Fish. Biol. 44:736-738 https://doi.org/10.1111/j.1095-8649.1994.tb01250.x
  2. Beitinger, T. L., W. A. Bennett and R. W. McCauley. 2000. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Env. Biol. Fish. 58: 237-275 https://doi.org/10.1023/A:1007676325825
  3. Bennett, W. A. and T. L. Beitinger. 1997. Temperature tolerance of the sheepshead minnow, Cyprinodon variegates. Copeia. 1997:77-87
  4. Blatter, D. P., F. Garner, K. Van Slyke and A. Bradley. 1972. Quantitative electrophoresis in polyacrylamide gels of 2-40%. J. Chromato. 64:147-155 https://doi.org/10.1016/S0021-9673(00)92958-3
  5. Chatterjee, N., A. K. Pal, S. M. Manush, T. Das and S. C. Mukherjee. 2004. Thermal tolerance and metabolic status of Labeo rohita and Cyprinus carpio early fingerlings acclimated to three different temperatures. J. Therm. Biol. 29:265-270 https://doi.org/10.1016/j.jtherbio.2004.05.001
  6. Chung, M. K., J. H. Choi, Y. K. Chung and K. M. Chee. 2005. Effects of dietary vitamins C and e on eggshell quality of broiler breeder hens exposed to heat stress. Asian-Aust. J. Anim. Sci. 18(4):545-551 https://doi.org/10.5713/ajas.2005.545
  7. Currie, S., C. D. Moyes and B. L. Tufts. 2000. The effects of heat shock and acclimation temperature on HSP70 and HSP30 mRNA expression in rainbow trout: in vivo and in vitro comparisons. J. Fish. Biol. 56:398-408 https://doi.org/10.1111/j.1095-8649.2000.tb02114.x
  8. Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. Chatterjee and S. C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Indian Major Carps acclimated to four different temperatures. J. Therm. Biol. 29:157-163 https://doi.org/10.1016/j.jtherbio.2004.02.001
  9. Das, T., A. K. Pal, S. K. Chakraborty, S. M. Manush, N. P. Sahu and S. C. Mukherjee. 2005. Thermal tolerance, growth and oxygen consumption of Labeo rohita fry (Hamilton, 1822) acclimated to four temperatures Journal of Thermal Biology. 30(5):378-383 https://doi.org/10.1016/j.jtherbio.2005.03.001
  10. Dietz, T. J. and G. N. Somero. 1992. The threshold induction temperature of the 90 kDa heat shock protein is subject to acclimatization in eurythermal goby fishes (Gillichhys). In proceedings of National Academy of Science. USA. 89:3389- 3393
  11. Feder, M. E. and G. E. Hofmann. 1999. Heat shock proteins, molecular chaperons, and the stress response: Evolutionary and ecological physiology. Annu. Rev. Physiol. 61:243-282 https://doi.org/10.1146/annurev.physiol.61.1.243
  12. Feige, U., R. Morimoto, I. Yahara and B. S. Polla. 1996. Stressinducible cellular responses Birkhauser-Verlag. Basel, Switzerland, p. 492
  13. Forsyth, R. B., E. P. M. Candido, S. L. Babich and G. K. Iwama. 1997. Stress protein expression in Coho salmon with bacterial kidney disease. J. Aqua. Anim. Health. 9:18-25 https://doi.org/10.1577/1548-8667(1997)009<0018:SPEICS>2.3.CO;2
  14. Freeland, R. A. and A. L. Harper. 1959. The study of metabolic pathway by means of adaptation. J. Biol. Chem. 234:1350-1354
  15. Guderley, H. 1990. Functional significance of metabolic responses to thermal acclimation in fish muscle. Am. J. Physiol. 259:245-252
  16. Hayford, Y. T., K. Sato, K. Takahashi, M. Toyomizu and Y. Akiba. 2002. Effects of Heat Stress and Dietary Tryptophan on Performance and Plasma Amino Acid Concentrations of Broiler Chickens. Asian-Aust. J. Anim. Sci. 15(2):247-253 https://doi.org/10.5713/ajas.2002.247
  17. Hutchinson, K. A., K. D. Ditmar, M. J. Czar and W. B. Pratt. 1994. Proof that HSP70 is required for assembly of glucocorticoid receptor into a heterocomplex with HSP90. J. Biol. Chem. 269:5043-5049
  18. Iwama, G. K., P. T. Thomas, R. B. Forsyth and M. M. Vijayan. 1998. Heat shock protein expression in fish. Rev. Fish Biol. Fish. 8:1-22 https://doi.org/10.1023/A:1008854816580
  19. Iwama, G. K., M. M. Vijayan, R. B. Forsyth and P. A. Ackerman. 1999. Heat shock proteins and physiological stress in fish. Am. Zool. 39:901-909 https://doi.org/10.1093/icb/39.6.901
  20. Kita, J., S. Tsuchida and T. Setoguma. 1996. Temperature preferance and tolerance, and oxygen consumption of the marbled rock-fish, Sebastiscus marmoratus. Mar. Biol. 125:467-471
  21. Kutty, M. N. 1981. Energy metabolism in mullet. In: Aquaculture of grey mullets. (Ed. O. H. Oven). pp. Cambridge University Press, London, pp. 219-253
  22. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680-685 https://doi.org/10.1038/227680a0
  23. Lowry, O. H., N. J. Ronebrough, A. L. Farr and R. J. Randall. 1951. Protein measurement with Folin Phenol Reagent. J. Biol. Chem. 193:265-276
  24. Manush, S. M., A. K. Pal, N. Chatterjee, T. Das and S. C. Mukherjee. 2004. Thermal tolerance and oxygen consumption of Macrobrachium rosenbergii acclimated to three temperatures. J. Therm. Biol. 29:15-19 https://doi.org/10.1016/j.jtherbio.2003.11.005
  25. Marjoic, A. S. 1964. Methods in Enzymology. Vol. II. (S. P. Colowick and N. O. Kaplan). Academic Press Inc, New York, p. 541
  26. Milligan, C. L. and S. S. Girard. 1993. Lactate metabolism in rainbow trout. J. Experi. Biol. 180:175-193
  27. Minier, C., V. Borghi, M. N. Moore and C. Porte. 2000. Seasonal variation of MXR and stress proteins in the common mussels, Mytillus galloprovincialis. Aquat. Toxicol. 50:167-176 https://doi.org/10.1016/S0166-445X(99)00104-6
  28. Ming, Y. C., S. Y. Huang, E. C. Lin, T. H. Hseu and W. C. Lee. 2003. Association of a Single Nucleotide Polymorphism in the 5'-Flanking Region of Porcine HSP70.2 with Backfat Thickness in Duroc Breed. Asian-Aust. J. Anim. Sci. 16(1):100-103 https://doi.org/10.5713/ajas.2003.100
  29. Moon, T. W. and G. D. Foster. 1995. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Metabolic and Adaptational Biochemistry. (Ed. P. W. Hochachka and T. P. Mommsen). Amsterdam, Elsevier Science, pp. 65-100
  30. Ochoa, 1955. Malic dehydrogenase and 'malic' enzyme. In: Methods of enzymology (Ed. I. S. P. Coloric and Kaplan). Academic Press, New York, pp. 735-745
  31. Pal, A. K. and S. C. Mukherjee. 2003. Heat shock Protein Expression in Fish and Shellfish: Environmental Perspectives and Health Management. In: Biotechnology in Environemntal Management. (T. Chakrabrti, T. K. Ghosh and G. Tripathi). APH Publishers, New Delhi, pp. 95-116
  32. Palmisano, N. A., J. R. Winton and W. W. Dickhoff. 2000. Tissuesspecific induction of HSP 90 mRNA and plasma cortisol response in Chinook Salmon following heat shock, sea water challenge and handling challenge. Mar. Biotechnol. 2:329-338
  33. Paromita, D., G. Akhil and K. M. Sanjib. 2005. Heat shock protein 70 expression in different tissues of Cirrhinus mrigala (Ham.) following heat stress. Agric. Res. 36(6):525-529
  34. Renukardhyay, K. M. and T. J. Varghese. 1986. Protein requirement of the carps Catla catla and Labeo rohita (Ham.). Proc. Indian Acad. Sci. (Anim. Sci.), 95:103-107
  35. Sanders, B. M. 1993. Stress proteins in aquatic organisms: an environmental perspective. Crit. Rev. Toxicol. 23:49-75 https://doi.org/10.3109/10408449309104074
  36. Schlesinger, M. J., M. Ashburner and Tissieres. 1982. Heat Shock Proteins from Bacteria to Man, Cold Springe Harbor Lab Press, NY. pp. 243-251
  37. Suarez, R. K. and T. P. Mommsen. 1987. Gluconeogenesis in teleost fishes. Can. J. Zool. 65:1869-1882 https://doi.org/10.1139/z87-287
  38. Sudarman, A. and T. Ito. 2000. Heat Production and Thermoregulatory Responses of Sheep Fed Different Roughage Proportion Diets and Intake Levels When Exposed to a High Ambient Temperature. Asian-Aust. J. Anim. Sci. 13(5):625-629 https://doi.org/10.5713/ajas.2000.625
  39. Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proceed. Nat. Acad. Sci. USA. 76(9):4350-4354
  40. Vijayan, M. M., J. S. Ballantyne and J. F. Leatherland. 1990. High stocking density alters the energy metabolism of brook charr, Salvelinus fontinalis. Aquac. 88:371-381 https://doi.org/10.1016/0044-8486(90)90162-G
  41. Vijayan, M. M., C. Pereira, E. G. Grau and G. K. Iwama. 1997. Metabolic responses associated with confinement stress in tilapia: the role of cortisol. Comp. Biochem. Physiol. 116C:89-95
  42. Wedemeyer, G. R., F. P. Meyer and L. Smith. 1999. Environmental stress and Fish diseases. Narendra Publ. House, Delhi, India, p. 107
  43. Werner, I., C. S. Koger, J. T. Hamm and D. E. Hinton. 2001. Ontogeny of the Heat Shock Protein, HSP70 and HSP 60, Response and Development effects of Heat- Shock in the Teleost, Medaka (Oryzias latipes). Environ. Sci. 8:13-29
  44. Wotton, I. D. P. 1964. Microanalysis. In Medical Biochemistry. J. A. Churchill (4th Eds).London, pp. 101-107
  45. Wrobleuiski, L. and J. S. Ladue. 1955. LDH activity in blood. Proc. Soc. Exp. Biol. Med. 90:210-213
  46. Zulkifli, I., S. A. Mysahra and L. Z. Jin. 2004. Dietary supplementation of betaine (betafin) and response to high temperature stress in male broiler chickens. Asian-Aust. J. Anim. Sci. 17(2):244-249 https://doi.org/10.5713/ajas.2004.244

Cited by

  1. in relation to acclimation temperatures vol.74, pp.7, 2009, https://doi.org/10.1111/j.1095-8649.2009.02216.x
  2. (Hamilton) fingerlings pp.13652109, 2010, https://doi.org/10.1111/j.1365-2109.2009.02383.x
  3. Haemato-immunological and stress responses of Labeo rohita (Hamilton) fingerlings: effect of rearing temperature and dietary gelatinized carbohydrate vol.95, pp.5, 2010, https://doi.org/10.1111/j.1439-0396.2010.01096.x
  4. High dietary protein combats the stress of Labeo rohita fingerlings exposed to heat shock vol.37, pp.4, 2011, https://doi.org/10.1007/s10695-011-9504-1
  5. fingerlings reared at higher water temperature vol.96, pp.4, 2012, https://doi.org/10.1111/j.1439-0396.2011.01181.x
  6. fed with high-protein diet vol.19, pp.2, 2012, https://doi.org/10.1111/j.1365-2095.2012.00951.x
  7. Influence of acclimation temperature on the induction of heat-shock protein 70 in the catfish Horabagrus brachysoma (Günther) vol.38, pp.4, 2012, https://doi.org/10.1007/s10695-011-9578-9
  8. Dietary choline, betaine and lecithin mitigates endosulfan-induced stress in Labeo rohita fingerlings vol.38, pp.4, 2012, https://doi.org/10.1007/s10695-011-9584-y
  9. fingerlings vol.21, pp.1, 2014, https://doi.org/10.1111/anu.12138
  10. Stress mitigating and growth enhancing effect of dietary tryptophan in rohu (Labeo rohita, Hamilton, 1822) fingerlings vol.40, pp.5, 2014, https://doi.org/10.1007/s10695-014-9927-6
  11. Beneficial Effects of Dietary Probiotics Mixture on Hemato-Immunology and Cell Apoptosis of Labeo rohita Fingerlings Reared at Higher Water Temperatures vol.9, pp.6, 2014, https://doi.org/10.1371/journal.pone.0100929
  12. Expression analysis of heat shock protein genes during Aeromonas hydrophila infection in rohu, Labeo rohita, with special reference to molecular characterization of Grp78 vol.20, pp.1, 2015, https://doi.org/10.1007/s12192-014-0527-2
  13. The potential for using enzymatic assays to assess the health of turkeys vol.72, pp.03, 2016, https://doi.org/10.1017/S0043933916000246
  14. Combined Effect of Heat Shock and Chlorine Fails to Elicit Acquired Thermal Tolerance in Labeo rohita Spawns vol.86, pp.3, 2016, https://doi.org/10.1007/s40011-014-0478-5
  15. Dietary supplementation of l-tryptophan mitigates crowding stress and augments the growth in Cirrhinus mrigala fingerlings vol.293, pp.3, 2006, https://doi.org/10.1016/j.aquaculture.2008.09.014
  16. Effects of high temperature on biochemical parameters, oxidative stress, DNA damage and apoptosis of pufferfish (Takifugu obscurus) vol.150, pp.None, 2006, https://doi.org/10.1016/j.ecoenv.2017.12.045
  17. Biochemical and physiological responses of Nile tilapia (Oreochromis niloticus Linn.) subjected to rapid increases of water temperature vol.28, pp.2, 2019, https://doi.org/10.1007/s00580-018-2872-5
  18. Effect of long-term thermal challenge on the Antarctic notothenioid Notothenia rossii vol.45, pp.4, 2006, https://doi.org/10.1007/s10695-019-00660-3
  19. Interpreting empirical estimates of experimentally derived physiological and biological thermal limits in ectotherms vol.98, pp.4, 2020, https://doi.org/10.1139/cjz-2018-0276
  20. Direct choline administration in semi-intensive pisciculture system: A positive contaminant vol.7, pp.None, 2006, https://doi.org/10.1016/j.emcon.2020.12.002
  21. Dietary Houttuynia cordata leaf extract and meal enhances the immunity and expression of immune genes in Labeo rohita (Hamilton, 1822) vol.52, pp.1, 2006, https://doi.org/10.1111/are.14901