• Title/Summary/Keyword: Protein Spot

Search Result 217, Processing Time 0.03 seconds

Isolation of Immunomodulatory Antitumor Active Polysaccharide (RGAP) from Red Ginseng By-Product and Its Physico-chemical Properties (홍삼추출잔사로부터 항암면역조절 활성을 보여주는 홍삼산성다당체(RGAP)의 분리 및 이화학적 특성)

  • Kwak, Yi-Seong;Shin, Han-Jae;Song, Yong-Bum;Park, Jong-Dae
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.752-757
    • /
    • 2003
  • This study was carried out in order to develop the method for isolation of red ginseng acidic polysaccharide (RGAP) haying immunomodulating antitumor activity from red ginseng by-product. The red ginseng by-product was obtained from red ginseng residues produced in processing of red ginseng ethanol extract. The yield of RGAP isolated by ultrafiltration was 20.9%. The active substance (GFP) was purified by DEAE-sepharose column chromatography RGAP induced nitric oxide (NO) exhibited tumoricidal activities against P8l5 (mastocytoma) tumor cells. Acid-hydrolyzed RGAP fragments were shown four to five spots. These sopts showed the same R$_{f}$ values with sugars designated as rhamnose, glucose, glactose and glucuronic acid. Some physico-chemical properties of RGAP were investigated. pH and dry reduction content at 105$^{\circ}C$ were 4.74 and 4.72%, respectively. Crude protein, ash and Pb contents were 3.30%, 4.74% and 2.30 ppm. These results suggest that we will be able to produce RGAP from red ginseng by-product by ultrafiltration in a large scale.e.

Cellular Responses and Morphological Changes of RDX-degrading Bacterium, Pseudomonas sp. HK-6 Exposed by Explosive Hexahydro-1,3,5-triaitro-1,3,5-triazine (RDX). (폭약 Hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX)에 노출된 분해세균 Pseudomonas sp. HK-6의 세포반응과 형태변화)

  • 장효원;강형일;김치경;오계헌
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.75-82
    • /
    • 2003
  • The cellular responses of RDX-degrading bacterium, Pseudomonas sp. HK-6 to explosive hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) were examined. Strain HK-6 grown at different RDX concentrations was found to demonstrate the survival rate in proportional to the rate of the stress shock proteins produced in this bacterium. Analysis of total cellular fatty acid acids showed that lipids 10:0 iso and 14:1 $\omega$5c/$\omega$5t increased approx three times in strain HK-6 grown on RDX media than TSA media. SDS-PAGE and Western blot using anti-DnaK and GroEL revealed that several stress shock proteins including 70 kDa DnaK and 60 kDa CroEL were newly synthesized in strain HK-6 exposed to different RDX concentrations in exponentially growing cultures. 2-D PAGE of soluble protein fractions from the culture of HK-6 exposed to RDX demonstrated that approximately 300 spots were observed on the silver stained gel ranging from pH 3 to pH 10. As a result, 10 spots were significantly induced and expressed in response to RDX. Scanning electron microscopy fur the cells treated with 0.135 mM RDX for 12 hrs showed the presence of perforations and irregular rod shapes with wrinkled surfaces.

A Shinpung Typed Large Grain and High-Yielding Peanut Variety 'Daan' (단경 소분지 대립 다수성 땅콩 신품종 '다안')

  • Pae, Suk-Bok;Lee, Myoung-Hee;Kim, Sung-Up;Hwang, Chung-Dong;Oh, Ki-Won;Jung, Chan-Sik;Song, Deok-Young;Baek, In-Youl;Lee, Young-Hee
    • Korean Journal of Breeding Science
    • /
    • v.49 no.3
    • /
    • pp.224-229
    • /
    • 2017
  • A new peanut variety 'Daan'(Arachis hypogaea ssp. hypogaea L.) was developed at the Department of Southern Area Crop Science, National Institute of Crop Science (NICS) in Milyang 2014. This was developed from the cross between 'Iksan 31' with Virginia typed short stem and 'Dakwang' with Shinpung-typed larger grain. 'Daan' which is a Shinpung plant type had 13 branches per plant and its length of main stem was 44cm. Each pod has two grains with brown testa and long ellipse-shaped large kernel. Its yield components showed 34 pods per plant, 127 g of 100-seed-weight and 75% of pod shelling ratio in the regional yield trials (RYT). Seed quality showed 47.8% of crude oil and 28.3% of protein content. This variety showed resistant to early leaf spot and had more resistant to late leaf spot, stem rot and lodging, compared to reference variety. In the regional yield trials for 3 years 'Daan' was more productive than reference variety by 16% with 5.00 MT/ha for grain production.

Implementation of User Interface for DNA Micro Array Printing Technology (DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술)

  • Park, Jae-Sam
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.12
    • /
    • pp.1875-1882
    • /
    • 2013
  • Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

Phenotypic and Genotypic Analysis of Rice Lesion Mimic Mutants

  • Matin, Mohammad Nurul;Pandeya, Devendra;Baek, Kwnag-Hyun;Lee, Dong-Sun;Lee, Jai-Heon;Kang, Ho-Duck;Kang, Sang-Gu
    • The Plant Pathology Journal
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2010
  • Lesion mimic mutant (LMM) plants display spontaneous necrotic lesions on their leaves without any pathogenic infection. Specific rice LMMs designated as spotted leaf (spl) including spl1, spl3, spl4, spl5 and spl6 are genetically known as lesion resembling disease (lrd) mutant. The inheritance patterns in the $F_1$ and $F_2$ progenies of these mutants are controlled by recessive genetic factors. Lesion development in the rice LMMs were controlled by both development stages and environmental factors. The rice LMMs exhibited higher numbers of spots under $45^{\circ}C$ temperature than those under $30^{\circ}C$. Contents of chlorophyll were drastically reduced at 60 days old LMM leaves when the spot formation was severe. The levels of endogenous hydrogen peroxide were highest at 45 days old mutants but reduced at 60 days old. Transcription levels of stress related genes including thioredoxin peroxidase and protein disulfide isomerase were reduced in spotted leaves than those of non spotted leaves. It could be suggested that scavenging system against reactive oxygen species induced by either stresses or innate metabolisms may not work properly in the rice LMMs. As these rice LMMs autonomously expressed clear lesions of lrd phenotype without pathogen infection, it could be useful to understand stresses responses in plants.

Influence of Hexaconazole on Biochemical Constituents of Groundnut (땅콩의 생화학성분에 미치는 Hexaconazole의 영향)

  • Johnson, I.;Marimuthu, T.;Samiyappan, R.;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2008
  • In this study, hexaconazole 5% SC, an ergosterol biosynthesis inhibitor, was tested on groundnut with its recommended ($500\;mL\;ha^{-1}$) and higher ($2,000\;mL\;ha^{-1}$) concentrations under greenhouse conditions in India. Its influence on biochemical constituents of groundnut plants was assessed apart from its disease management potential against late leaf spot caused by Phaeoisariopsis personata (Berk and Curt). Likewise, leaf samples were collected from hexaconazole 5% SC-sprayed plants at different time intervals. Thereafter, their analyses showed considerable differences in the plant constituents, such as chlorophyll, soluble protein, and total phenol contents and the activity of nitrate reductase enzyme. The induction activity of defense-related enzyme, peroxidase, was also analyzed. However, no difference was observed in the isozymic pattern. Moreover, the ground kernels collected from treated plants also showed no difference in the estimated carbohydrate and other constituents.

In vivo and In vitro Metabolism of Recombinant Human Epidermal Growth Factor (DWP401) in Rats (재조합 인간 상피세포성장인자(DWP401)의 흰쥐에서의 in vivo와 in vitro 대사)

  • Koh, Yeo-Wook;Nam, Kouen-Ho;Jung, Ju-Young;Park, Seung-Kook;Yu, Young-Hyo;Kim, Jae-Hwan;Han, Kun;Park, Myung-Hwan;Shim, Chang-Koo
    • YAKHAK HOEJI
    • /
    • v.41 no.3
    • /
    • pp.381-388
    • /
    • 1997
  • Metabolism of DWP401, recombinant juman epidermal growth factor, was examined in vivo and in vitro in rats. When $^{125}I$-labeled DWP401 was administered at a dose of 50 ${\mu}g$/kg by i.v. injection. $^{125}I$-labeled DWP401 was rapidly degraded within 30 minytes above 93%. Thin layer chromatography analysis of urine collected for 24 hr after i.v. administration of $^{125}I$-labeled DWP401 showed ohly one spot on a X-ray film which was considered as diiodo-tyrosine. This result suggests tha $^{125}I$-labeled DWP401 was completely digested into free amino acids without any specific intermediate polypeptides. About 42.1% of the administered iodine was recovered in 24 hr. For in vitro degradation study, $^{125}I$-labeled DWP401 was added to plama and tissue homogenates of rats and incubated at $37^{\circ}C$. Almost 98% of the added radioactivity recovered from the protein fraction of the liver, kidey, small intestine, stomach and spleen decreased rapidly. For examplem the recovery rates of $^{125}I$-labeled DWP401 were 58.6, 63.2, 39.9, 52.9 and 66.8% after 4hrs of incubation in respective organ homogenates.

  • PDF

Isolation and Selection of Functional Microbes for Eco-friendly Turfgrass Management in Golf Course from Livestock Manure Compost (친환경 잔디관리를 위한 가축분퇴비 중 기능성미생물의 분리 및 선발)

  • Jeong, Je-Yong;Kim, Young-Sun;Cho, Sung-Hyun;Lee, Geung-Joo
    • Weed & Turfgrass Science
    • /
    • v.6 no.2
    • /
    • pp.157-164
    • /
    • 2017
  • Functional microorganisms decompose various organic matter by enzyme activity and suppress plant disease caused by pathogen. This study was conducted to isolate and select functional microorganisms with protein or carbohydrate degradation activities and antagonistic activity against turfgrass fungal pathogens for eco-friendly turfgrass management in golf course from compost containing livestock manure of poultry or swine. Totally 68 isolates collected from livestock manure compost strains were isolated and tested for their activities of amylase, protease and lipase and antagonistic activities against Rhizoctonia solani AG2-2, R. solani AG1-1, and Sclerotinia homoeocarpa. Among the isolates, 34 strains were selected as functional microbes showing higher activities of amylase and protease. Three isolates of ASC-14, ASC-18, and ASC-35 among the 34 strains were selected as antifungal bacterial strains repressing the above 3 turfgrass fungal pathogens. Analysis results of 16s rRNA gene sequence and phylogenic cluster indicated that ASC-14 and ASC-18 belonged to Bacillus amyloliquefaciens, while ASC-35 was B. subtilis, respectively.

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage

  • Kim, Yeong Chae;Kim, Yeon Hwa;Lee, Young Hee;Lee, Sang Woo;Chae, Yun-Soek;Kang, Hyun-Kyung;Yun, Byung-Wook;Hong, Jeum Kyu
    • The Plant Pathology Journal
    • /
    • v.29 no.3
    • /
    • pp.305-316
    • /
    • 2013
  • Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.

Biological and Molecular Characterization of a Korean Isolate of Cucurbit aphidborne yellows virus Infecting Cucumis Species in Korea

  • Choi, Seung-Kook;Yoon, Ju-Yeon;Choi, Gug-Seoun
    • The Plant Pathology Journal
    • /
    • v.31 no.4
    • /
    • pp.371-378
    • /
    • 2015
  • Surveys of yellowing viruses in plastic tunnels and in open field crops of melon (Cucumis melo cultivar catalupo), oriental melon (C. melo cultivar oriental melon), and cucumber (C. sativus) were carried out in two melon-growing areas in 2014, Korea. Severe yellowing symptoms on older leaves of melon and chlorotic spots on younger leaves of melon were observed in the plastic tunnels. The symptoms were widespread and included initial chlorotic lesions followed by yellowing of whole leaves and thickening of older leaves. RT-PCR analysis using total RNA extracted from diseased leaves did not show any synthesized products for four cucurbit-infecting viruses; Beet pseudo-yellows virus, Cucumber mosaic virus, Cucurbit yellows stunting disorder virus, and Melon necrotic spot virus. Virus identification using RT-PCR showed Cucurbit aphid-borne yellows Virus (CABYV) was largely distributed in melon, oriental melon and cucumber. This result was verified by aphid (Aphis gossypii) transmission of CABYV. The complete coat protein (CP) gene amplified from melon was cloned and sequenced. The CP gene nucleotide and the deduced amino acid sequence comparisons as well as phylogenetic tree analysis of CABYV CPs showed that the CABYV isolates were undivided into subgroups. Although the low incidence of CABYV in infections to cucurbit crops in this survey, CABYV may become an important treat for cucurbit crops in many different regions in Korea, suggesting that CABYV should be taken into account in disease control of cucurbit crops in Korea.