Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.12.2012.0191

β-Amino-n-butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage  

Kim, Yeong Chae (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kim, Yeon Hwa (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Lee, Young Hee (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Lee, Sang Woo (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Chae, Yun-Soek (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Kang, Hyun-Kyung (Department of Environmental Landscape Architecture, Sangmyung University)
Yun, Byung-Wook (Division of Plant Biosciences, School of Applied Biosciences, Kyungpook National University)
Hong, Jeum Kyu (Department of Horticultural Science, Gyeongnam National University of Science and Technology (GNTech))
Publication Information
The Plant Pathology Journal / v.29, no.3, 2013 , pp. 305-316 More about this Journal
Abstract
Non-protein amino acid, ${\beta}$-amino-n-butyric acid (BABA), has been involved in diverse physiological processes including seedling growth, stress tolerance and disease resistance of many plant species. In the current study, treatment of kimchi cabbage seedlings with BABA significantly reduced primary root elongation and cotyledon development in a dose-dependent manner, which adverse effects were similar to the plant response to exogenous abscisic acid (ABA) application. BABA was synergistically contributing ABA-induced growth arrest during the early seedling development. Kimchi cabbage leaves were highly damaged and seedling growth was delayed by foliar spraying with high concentrations of BABA (10 to 20 mM). BABA played roles differentially in in vitro fungal conidial germination, mycelial growth and conidation of necrotroph Alternaria brassicicola causing black spot disease and hemibiotroph Colletotrichum higginsianum causing anthracnose. Pretreatment with BABA conferred induced resistance of the kimchi cabbage against challenges by the two different classes of fungal pathogens in a dose-dependent manner. These results suggest that BABA is involved in plant development, fungal development as well as induced fungal disease resistance of kimchi cabbage plant.
Keywords
${\beta}$-amino-n-butyric acid; fungal development; induced disease resistance; kimchi cabbage; seedling development;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Eschen-Lippold, L., Altmann, S. and Rosahl, S. 2010. DL-${\beta}$-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Mol. Plant-Microbe Interact. 23:585-592.   DOI   ScienceOn
2 Fischer, M. J. C., Farine, S., Chong, J., Guerlain, P. and Bertsch, C. 2009. The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protect. 28:710-712.   DOI   ScienceOn
3 Flors, V., Ton, J., van Doorn, R., Jakab, G., Garcia-Agustin, P. and Mauch-Mani, B. 2008. Interplay between JA, SA and ABA signaling during basal and induced resistance against Pseudomonas syringae and Alternaria brassicicola. Plant J. 54:81-92.
4 Luo, Y., Shang, J., Zhao, P., Xi, D., Yuan, S. and Lin, H. 2011. Application of jasmonic acid followed by salicylic acid inhibits Cucumber mosaic virus replication. Plant Pathol. J. 27:53-58.   DOI   ScienceOn
5 Macko, V., Trione, E. J. and Young, S. A. 1977. Identification of the germination self-inhibitor from uredospores of Puccinia striiformis. Phytopathology 67:1473-1474.
6 Mayer, A. M., Staples, R. C. and Gil-ad, N. L. 2001. Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58: 33-41.   DOI   ScienceOn
7 Migahed, F. F. and Nofel, A. M. 2001. Leaf exudates of Vicia faba and their effects on Botrytis fabae and some associated fungi. Mycobiology 24:198-204.
8 Munch, S., Lingner, U., Floss, D. S., Ludwig, N., Sauer, N. and Deising, H. B. 2008. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165:41-51.   DOI   ScienceOn
9 Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 15:474-497.
10 Nakashima, K., Ito, Y. and Yamaguchi-Shinozaki, K. 2009. Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol. 149:88-95.   DOI   ScienceOn
11 Narusaka, Y., Narusaka, M., Park, P., Kubo, Y., Hirayama, T., Seki, M., Shiraishi, T., Ishida, J., Nakashima, M., Enju, A., Sakurai, T., Satou, M., Kobayashi, M. and Shinozaki, K. 2004. RCH1, a locus in Arabidopsis that confers resistance to the hemibiotrophic fungal pathogen Colletotrichum higginsianum. Mol. Plant-Microbe Interact. 17:749-762.   DOI   ScienceOn
12 Newton, E. J. 1977. Abscisic acid effects on fronds and roots of Lemna minor L. Amer. J. Bot. 64:45-49.   DOI   ScienceOn
13 Abe, H., Shimoda, T., Ohnishi, J., Kugimiya, S., Narusaka, M., Seo, S., Narusaka, Y., Tsuda, S. and Kobayashi, M. 2009. Jasmonate- dependent plant defense restricts thrips performance and preference. BMC Plant Biol. 9:97.   DOI   ScienceOn
14 O'Connell, R. J., Uronu, A. B., Waksman, G., Nash, C., Keon, J. P. R. and Bailey, J. A. 1993. Hemibiotrophic infection of Pisum sativum by Colletotrichum truncatum. Plant Pathol. 42:774-783.   DOI   ScienceOn
15 Olivieri, F. P., Lobato, M. C., Altamiranda, E. G., Daleo, G. R., Huarte, M., Guevara, M. G. and Andreu, A. B. 2009. BABA effects on the behavior of potato cultivars infected by Phytophthora infestans and Fusaium solani. Eur. J. Plant Pathol. 123:47-56.   DOI
16 Osbourne, A. E. 1996. Preformed antimicrobial compounds and plant defense against fungal attack. Plant Cell 8:1821-1831.   DOI   ScienceOn
17 Bouche, N. and Fromm, H. 2004. GABA in plants: just a metabolite- Trends Plant Sci. 9:110-115.   DOI   ScienceOn
18 Chen, P.-W., Singh, P. and Zimmerli, L. 2012. Priming of the Arabidopsis pattern-triggered immunity response upon infection by necrotrophic Pectobacterium carotovorum bacteria. Mol. Plant Pathol. 14:58-70.
19 Choi, K. O. and Hong, J. K. 2009. First report of anthracnose occurrence on sloumi by Colletotrichum gloeosporioides in Korea. Plant Pathol. J. 25:434.   과학기술학회마을   DOI   ScienceOn
20 Choi, O., Seo J., Kwon, J.-H. and Kim, J. 2011. Anthracnose caused by Colletotrichum gloeosporioides on sweet crabapple in Korea. Plant Pathol. J. 27:396.   과학기술학회마을   DOI   ScienceOn
21 Cohen, Y. 1994. 3-Aminobutyric acid induces systemic resistance against Peronospora tabacina. Physiol. Mol. Plant Pathol. 44:273-288.   DOI   ScienceOn
22 Dahlberg, K. R. and van Etten, J. L. 1982. Physiology and biochemistry of fungal sporulation. Annu. Rev. Phytopathol. 20:281-301.   DOI   ScienceOn
23 Cohen, Y. and Gisi, U. 1994. Systemic translocation of 14C-DL-3- aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 45:441-456.   DOI   ScienceOn
24 Cohen, Y., Niderman, T., Mosinger, E. and Fluhr, R. 1994. ${\beta}$- Aminobutyric acid induces the accumulation of pathogenesisrelated proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol. 104:59-66.   DOI
25 Cohen, Y., Rubin, A. E. and Kilfin, G. 2010. Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-${\beta}$-amino-butyric acid (BABA). Eur. J. Plant Pathol. 126:553-573.   DOI
26 Hong, J. K., Hwang, B. K. and Kim, C. H. 1999. Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-${\beta}$-amino-n-butyric acid. J. Phytopathol. 147:193-198.   DOI
27 Jackson, M. A. and Bothast, R. J. 1990. Carbon concentration and carbon-to-nitrogen ratio influence submerged-culture conidation by the potential bioherbicide Colletotrichum truncatum NRRL 13737. Appl. Environ. Microbiol. 56:3435-3438.
28 Jakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2001. ${\beta}$-Aminobutyric acid-induced resistance in plants. Eur. J. Plant Pathol. 107:29-37.   DOI   ScienceOn
29 Jakab, G., Ton, J., Flors, V., Zimmerli, L., Metraux, J. P. and Mauch-Mani, B. 2005. Enhancing Arabidopsis salt and drought stress tolerance by chemical priming for its abscisic acid responses. Plant Physiol. 139:267-274.   DOI   ScienceOn
30 Jeun, Y. C. and Park, E. W. 2003. Ultrastructures of the leaves of cucumber plants treated with DL-3-aminobutyric acid at the vascular bundle and the penetration sites after inoculation with Colletotrichum orbicularae. Plant Pathol. J. 19:85-91.   DOI   ScienceOn
31 Kamble, A. and Bhargava, S. 2007. ${\beta}$-Aminobutyric acid-induced resistance in Brassica juncea against the necrotrophic pathogen Alternaria brassicae. J. Phytopathol. 155:152-158.   DOI   ScienceOn
32 Porat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E. and Droby, S. 2003. Induction of resistance to Penicillium digitatum in grapefruit by ${\beta}$-aminobutyric acid. Eur. J. Plant Pathol. 109:901-907.   DOI   ScienceOn
33 Pridham, J. B. and Woodhead, S. 1977. The biosynthesis of melanin in Alternaria. Phytochemistry 16:903-906.   DOI   ScienceOn
34 Reuveni, M., Sheglove, D. and Cohen, Y. 2003. Control of moldycore decay in apple fruits by ${\beta}$-aminobutyric acids and potassium phosphites. Plant Dis. 87:933-936.   DOI   ScienceOn
35 Ross, R. G. 1968. Amino acids as nitrogen sources for conidial production of Venturia inaequalis. Can. J. Bot. 46:1555-1560.   DOI
36 Rotem, J., Cohen, Y. and Bashi, E. 1978. Host and environmental influences on sporulation in vivo. Annu. Rev. Phytopathol. 16:83-101.   DOI   ScienceOn
37 Rowe, H. C., Walley, J. W., Corwin, J., Chan, E. K. F., Dehesh, K. and Kliebenstein, D. J. 2010. Deficiencies in jasmonate-mediated plant defense reveal quantitative variation in Botrytis cinerea pathogenesis. PLoS Pathog. 6:e1000861.   DOI   ScienceOn
38 Sasek, V., Novakova, M., Dobrev, P. I., Valentova and Burketova, L. 2012. ${\beta}$-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect- Eur. J. Plant Pathol. 133:279-289.   DOI
39 Siegrist, J., Orober, M. and Buchenauer, H. 2000. ${\beta}$-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant Pathol. 56:95-106.   DOI   ScienceOn
40 Shailasree, S., Sarosh, B. R., Vasanthi, N. S. and Shetty, H. S. 2001. Seed treatment with ${\beta}$-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Manag. Sci. 57:721-728.   DOI   ScienceOn
41 Smith, J. L., de Moraes, C. M. and Mescher, M. C. 2009. Jasmonate- and salicylate-mediated plant defense responses to insect herbivores, pathogens and parasitic plants. Pest Manag. Sci. 65:497-503.   DOI   ScienceOn
42 Solomon, P. S. and Oliver, R. P. 2001. The nitrogen content of the tomato leaf apoplast increases during infection by Cladosporium fulvum. Planta 213:241-249.   DOI   ScienceOn
43 Solomon, P. S. and Oliver, R. P. 2002. Evidence that ${\gamma}$-aminobutyric acid is a major nitrogen source during Cladosporium fulvum infection of tomato. Planta 214:414-420.   DOI   ScienceOn
44 Tavallali, V., Karimi, S., Mohammadi, S. and Hojati, S. 2008. Effects of ${\beta}$-aminobutyric acid on the induction of resistance to Penicillium italicum. World Appl. Sci. J. 5:345-351.
45 Thanh, N. V., Rombouts, F. M. and Nout, M. J. R. 2005. Effect of individual amino acids and glucose on activation and germination of Rhizopus oligosporus sporangiospores in tempe starter. J. Appl. Microbiol. 99:1204-1214.   DOI   ScienceOn
46 The Brassica rapa Genome Sequencing Consortium 2011. The genome of the mesopolyploid crop species Brassica rapa. Nature Genet. 43:1035-1039.   DOI   ScienceOn
47 Thomma, B. P. H. J. 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4:225-236.   DOI   ScienceOn
48 Tuteja, N. 2007. Abscisic acid and abiotic stress signaling. Plant Sig. Behav. 2:135-138.   DOI
49 Ton, J. and Mauch-Mani, B. 2004. ${\beta}$-Amino-butyric acid-induced resistance against necrotrophic pathogen is based on ABAdependent priming for callose. Plant J. 38:119-130.   DOI   ScienceOn
50 Tsurushima, T., Ueno, T., Fukami, H., Irie, H. and Inoue, M. 1995. Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Mol. Plant-Microbe Interact. 8:652-657.   DOI   ScienceOn
51 van Loon, L. C., Rep, M. and Pierterse, C. M. J. 2006. Significance of inducible defense related proteins in infected plants. Annu. Rev. Phytopathol. 44:135-162.   DOI   ScienceOn
52 van Wees, S. C. M., Van der Ent, S. and Pieterse, C. M. J. 2008. Plant immunity responses triggered by beneficial microbes. Curr. Opin. Plant Biol. 11:443-448.   DOI   ScienceOn
53 Vlot, A. C., Dempsey, D. M. A. and Klessig, D. F. 2009. Salicylic acid, a multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47:177-206.   DOI   ScienceOn
54 Walz, A. and Simon, O. 2009. ${\beta}$-Amino-butyric acid-induced resistance in cucumber against biotrophic and necrotrophic pathogens. J. Phytopathol. 157:356-361.   DOI   ScienceOn
55 Wu, C. C., Singh, P., Chen, M. C. and Zimmerli, L. 2010. LGlutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J. Exp. Bot. 61: 995-1002.   DOI   ScienceOn
56 Zeevaart, J. A. D. and Creelman, R. A. 1998. Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39:439-473.
57 Zhang, Y., Yang, C., Li, Y., Zheng, N., Chen, H., Zhao, Q., Gao, T., Guo, H. and Xie, Q. 2007. SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912-1929.   DOI   ScienceOn
58 Friesrich, L., Lawton, K., Ruess, W., Masner, P., Specker, N., Rella, M. G., Meier, B., Dincher, S., Staub, T., Uknes, S., Metraux, J. P., Kessmann, H. and Ryals, J. 1996. A benzothiadiazole derivatives induces systemic acquired resistance in tobacco. Plant J. 10:61-70.   DOI   ScienceOn
59 Zimmerli, L., Hou, B. H., Tsai, C. H., Jakab, G., Mauch-Mani, B. and Somerville, S. 2008. The xenobiotic ${\beta}$-aminobutyric acid enhances Arabidopsis thermotolerance. Plant J. 53:144-156.   DOI   ScienceOn
60 Zimmerli, L., Jakab, G., Metraux, J. P. and Mauch-Mani, B. 2000. Potentiation of pathogen-specific defense mechanisms in Arabidopsis by ${\beta}$-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920-12925.   DOI   ScienceOn
61 Garcia-Brugger, A., Lamotte, O., Vandelle, E., Bourque, S., Lecourieux, D., Poinssot, B., Wendehenne, D. and Pugin, A. 2006. Early signaling events induced by elicitors of plant defenses. Mol. Plant-Microbe Interact. 7:711-724.
62 Gorlach, J., Volrath, S., Knauf-Beiter, G., Hengu, G., Beckhove, U., Kogel, K. H., Staub, M. T., Ward, E., Kessmann, H. and Ryals, J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates expression and disease resistance in wheat. Plant Cell 8:629-643.   DOI   ScienceOn
63 Govrin, E. M. and Levine, A. 2000. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol. 10:751-757.   DOI   ScienceOn
64 Hamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M. and Mauch-Mani, B. 2005. ${\beta}$-Amino-butyric acid-induced resistance against downy mildew in grapevine acts through the potentiate of callose formation and jasmonic acid signaling. Mol. Plant-Microbe Interact. 18:819-829.   DOI   ScienceOn
65 Kawamura, C., Moriwaki, J., Kimura, N., Fujita, Y., Fuji, S., Hirano, T., Koizumi, S. and Tsuge, T. 1997. The melanin biosynthesis genes of Alternaria alternata can restore pathogenicity of the melanin-deficient mutants of Magnaporthe grisea. Mol. Plant-Microbe Interact. 10:446-453.   DOI   ScienceOn
66 Kawamura, C., Tsujimoto, T. and Tsuge, T. 1999. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Mol. Plant-Microbe Interact. 12:59-63.   DOI   ScienceOn
67 Lin, C. C. and Kao, C. H. 2001. Abscisic acid changes in cell wall peroxidase activity and hydrogen peroxide level in roots of rice seedlings. Plant Sci. 160:323-329.   DOI   ScienceOn