Browse > Article
http://dx.doi.org/10.5423/PPJ.2010.26.2.159

Phenotypic and Genotypic Analysis of Rice Lesion Mimic Mutants  

Matin, Mohammad Nurul (Department of Biotechnology, Yeungnam University)
Pandeya, Devendra (Department of Biotechnology, Yeungnam University)
Baek, Kwnag-Hyun (Department of Biotechnology, Yeungnam University)
Lee, Dong-Sun (Rice Research Institute, Yunnan Agricultural University)
Lee, Jai-Heon (Department of Genetic Engineering, Dong-A University)
Kang, Ho-Duck (Department of Environmental and Ecological Engineering, Dongguk University)
Kang, Sang-Gu (Department of Biotechnology, Yeungnam University)
Publication Information
The Plant Pathology Journal / v.26, no.2, 2010 , pp. 159-169 More about this Journal
Abstract
Lesion mimic mutant (LMM) plants display spontaneous necrotic lesions on their leaves without any pathogenic infection. Specific rice LMMs designated as spotted leaf (spl) including spl1, spl3, spl4, spl5 and spl6 are genetically known as lesion resembling disease (lrd) mutant. The inheritance patterns in the $F_1$ and $F_2$ progenies of these mutants are controlled by recessive genetic factors. Lesion development in the rice LMMs were controlled by both development stages and environmental factors. The rice LMMs exhibited higher numbers of spots under $45^{\circ}C$ temperature than those under $30^{\circ}C$. Contents of chlorophyll were drastically reduced at 60 days old LMM leaves when the spot formation was severe. The levels of endogenous hydrogen peroxide were highest at 45 days old mutants but reduced at 60 days old. Transcription levels of stress related genes including thioredoxin peroxidase and protein disulfide isomerase were reduced in spotted leaves than those of non spotted leaves. It could be suggested that scavenging system against reactive oxygen species induced by either stresses or innate metabolisms may not work properly in the rice LMMs. As these rice LMMs autonomously expressed clear lesions of lrd phenotype without pathogen infection, it could be useful to understand stresses responses in plants.
Keywords
lesion; lesion mimic mutant; Oryza sativa; reactive oxygen species; spotted leaf;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Yamanouchi, U., Yano, M., Lin, H., Ashikari, M. and Yamada, K. 2002. A rice spotted leaf gene, Spl7, encodes a heat stress transcription factor protein. Proc. Natl. Acad. Sci. USA 99:7530-7535.   DOI   ScienceOn
2 Yao, Q., Zhou, R., Fu, T., Wu, W., Zhu, Z., Li, A. and Jia, J. 2009. Characterization and mapping of complementary lesionmimic genes lm1 and lm2 in common wheat. Theor. Appl. Genet. 119:1005-1012.   DOI
3 Yin, Z., Chen, J., Zeng, L., Goh, M., Leung, H., Khush, G. S. and Wang, G. L. 2000. Characterizing rice lesion mimic mutants and identifying a mutant with broad-spectrum resistance to rice blast and bacterial blight. Mol. Plant Microbe Interact. 13:869-876.   DOI   ScienceOn
4 Zeng, L. R., Qu, S., Bordeos, A., Yang, C., Baraoidan, M., Yan, H. and Xie, Q. 2004. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-Box/Armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795-2808.   DOI   ScienceOn
5 Puig, A. and Gilbert, H. F. 1994. Protein disulfide isomerase exhibits chaperone and anti-chaperone activity in the oxidative refolding of lysozyme. J. Biol. Chem. 269:7764-7771.
6 Rostoks, N., Schmierer, D., Mudie, S., Drader, T., Brueggeman, R., Caldwell, D. G., Waugh, R. and Kleinhofs, A. 2006. Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol. Genet. Genomics 275:159-168.   DOI
7 Schroder, E. and Pointing, C. P. 1998. Evidence that peroxiredoxins are novel members of the thioredoxin fold superfamily. Protein Sci. 7:2465-2468.   DOI   ScienceOn
8 Simmons, C., Hantke, S., Grant, S., Johal, G. S. and Briggs, S. P. 1998. The maize lethal leaf spot 1 mutant has elevated resistant to fungal infection at the leaf epidermis. Mol. Plant Microbe Interact. 11:1110-1118.   DOI
9 Sugie, A., Murai, K. and Takumi, S. 2007. Alteration of respiration capacity and transcript accumulation level of alternative oxidase genes in necrosis lines of common wheat. Genes Genet. Syst. 82:231-239.   DOI   ScienceOn
10 Takahashi, A., Kawasaki, T., Henmi, K., Shii, K., Kodama, O., Satoh, H. and Shimamoto, K. 1999. Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J. 17:535-545.   DOI   ScienceOn
11 Liu, G., Wang, L., Zhou, Z., Leung, H., Wang, G. L. and He, C. 2004. Physical mapping of a rice lesion mimic gene, Spl1, to a 70-kb segment of rice chromosome 12. Mol. Genet. Genomics 272:108-115.
12 Wang, F., Wang, G., Li, X., Huang, J. and Zheng, J. 2008. Heredity, physiology and mapping of a chlorophyll content gene of rice (Oryza sativa L.). J. Plant Physiol. 165:324-330.   DOI   ScienceOn
13 Wolter, M., Hollricher, K., Salamini, F. and Schulze-Lefert, P. 1993. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defense mimic phenotype. Mol. Gen. Genet. 239:122-128.
14 Wu, C., Bordeos, A., Madamba, M. R., Baraoidan, M., Ramos, M., Wang, G. L., Leach, J. E. and Leung, H. 2008. Rice lesion mimic mutants with enhanced resistance to diseases. Mol. Genet. Genomics 279:605-619.   DOI
15 Lorrain, S., Vailleau, F., Balague, C. and Roby, D. 2003. Lesion mimic mutants: keys for deciphering cell death and defense pathways in plants?. Trends Plant Sci. 8:263-271.   DOI   ScienceOn
16 Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315-322.
17 Macnevin, W. M. and Uron, P. F. 1953. Separation of hydrogen peroxide from organic hydroperoxides. Anal. Chem. 25:1760-1761.   DOI
18 Matin, M. N., Suh, H. S. and Kang, S. G. 2006. Characterization of phenotypes of rice lesion resembling disease mutants. Korean J. Genet. 28:221-228.
19 Mittler, R., Vanderauwera, S., Gollery, M. and Van Breusegem, F. 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9:490-496.   DOI   ScienceOn
20 Mizobuchi, R., Hirabayashi, H., Kaji, R., Nishizawa, Y., Yoshimura, A., Satoh, H., Ogawa, T. and Okamoto, M. 2002. Isolation and characterization of rice lesion-mimic mutants with enhanced resistance to rice blast and bacterial blight. Plant Sci. 163:345-353.   DOI   ScienceOn
21 Mori, M., Tomita, C., Sugimoto, K., Hasegawa, M., Hayashi, N., Dubouzet, J. G., Ochiai, H., Sekimoto, H., Hirochika, H. and Kikuchi, S. 2007. Isolation and molecular characterization of a Spotted leaf 18 mutant by modified activation-tagging in rice. Plant Mol. Biol. 63:847-860.   DOI
22 Noutoshi, Y., Kuromori, T., Wada, T., Hirayama, T., Kamiya, A., Imura, Y., Yasuda, M., Nakashita, H., Shirasu, K. and Shinozaki, K. 2006. Loss of necrotic spotted lesions 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol. Biol. 62:29-42.   DOI
23 Guo, B., Liang, Y. and Zhu, Y. 2009. Does salicylic acid regulate antioxidant defense system, cell death, cadmium uptake and partitioning to acquire cadmium tolerance in rice?. J. Plant Physiol. 166:20-31.   DOI   ScienceOn
24 Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. and Matsui, H. 2001. A large family of class III plant peroxidases. Plant Cell Physiol. 42:462-468.   DOI   ScienceOn
25 Hoisington, D. A., Neuffer, M. G. and Walbot, V. 1982. Disease lesion mimics in maize. 1. Effect of genetic background, temperature, developmental age, and wounding on necrotic spot formation with Les1. Dev. Biol. 93:381-388.   DOI   ScienceOn
26 Hu, G., Yalpani, N., Briggs, S. P. and Johal, G. S. 1998. A porphyrin pathway impairment is responsible for the phenotype of a dominant disease lesion mimic mutant of maize. Plant Cell 10:1095-1105.   DOI
27 Jabs, T., Dietrich, R. A. and Dangl, J. L. 1996. Initiation of runway cell death in an Arabidopsis mutant by extra cellular superoxide. Science 273:1853-1856.   DOI   ScienceOn
28 Kang, S. G., Matin, M. N., Bae, H. H. and Natarajan, S. 2007. Proteome analysis and characterization of phenotypes of lesion mimic mutant spotted leaf 6 in rice. Proteomics 7:2447-2458.   DOI   ScienceOn
29 Jambunathan, N., Siani, J. M. and McNellis, T. W. 2001. A humidity-sensitive Arabidopsis copine mutant exhibits precocious cell death and increased disease resistance. Plant Cell 13:2225-2240.   DOI
30 Kang, S. G., Jeong, H. K. and Suh, H. S. 2004. Characterization of a new member of the glutathione peroxidase gene family in Oryza sativa. Mol. Cells 17:23-28.
31 Lee, E. T., Koo, B. J., Jung, J. H., Chang, M. U. and Kang, S. G. 2007. Detection of allexiviruses in the garlic plants in Korea. Plant Pathol. J. 23:266-271.   DOI   ScienceOn
32 Chory, J., Peto, C. A., Ashbaugh, M., Saganich, R., Pratt, L. and Ausubel, F. 1989. Different roles for phytochrome in etiolated and green plants deduced from characterization of Arabidopsis thaliana mutants. Plant Cell 1:867-880.   DOI   ScienceOn
33 Davis, M. S., Forman, A. and Fajer, J. 1979. Ligated chlorophyll cation radicals: their function in photosystem II of plant photosynthesis. Proc. Natl. Acad. Sci. USA 76:4170-4174.   DOI   ScienceOn
34 Dietrich, R. A., Delaney, T. P., Uknes, S. J., Ward, E. R., Ryals, J. A. and Dangl, J. L. 1994. Arabidopsis mutants simulating disease resistance response. Cell 77:565-577.   DOI   ScienceOn
35 Gray, J., Close, P. S., Briggs, S. P. and Johal, G. S. 1997. A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89:25-31.   DOI   ScienceOn
36 Gray, J., Janick-Buckner, D., Buckner, B., Close, P. S. and Johal, G. S. 2002. Light-dependent death of maize lls1 cells is mediated by mature chloroplasts. Plant Physiol. 130:1894-1907.   DOI   ScienceOn
37 Buschges, R., Hollricher, K., Panstruga, R., Simons, G., Wolter, M., Frijters, A., van Daelen, R., van der Lee, T., Diergaarde, P., Groenendijk, J., Topsch, S., Vos, P., Salamini, F. and Schulze-Lefert, P. 1997. The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 7:695-705.
38 Greenberg, J. T. 1996. Programmed cell death: A way of life for plants. Proc. Natl. Acad. Sci. USA 93:12094-12097.   DOI
39 Greenberg, J. T. and Ausubel, F. M. 1993. Arabidopsis mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4:327-341.   DOI
40 Bulleid, N. J. 1993. Protein disulfide isomerase: role in biosynthesis of secretory proteins. Adv. Protein Chem. 44:125-150.   DOI
41 Brennan, T. and Frenkel, C. 1977. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 59:411-416.   DOI   ScienceOn
42 Anderson, M. D., Prasad, T. K. and Stewart, C. R. 1995. Changes in isozyme profiles of catalase, peroxidase, and glutathione reductase during acclimation to chilling in mesocotyls of maize seedlings. Plant Physiol. 109:1247-1257.   DOI
43 Balague, C., Lin, B., Alcon, C., Flottes, G., Malmstrom, S., Kohler, C., Neuhaus, G., Pelletier, G., Gaymard, F. and Roby, D. 2003. HLM1, an essential signaling component in the hypersensitive response, is a member of the cyclic nucleotidegated channel ion channel family. Plant Cell 15:365-379.   DOI
44 Bouchez, O., Huard, C., Lorrain, S., Roby, D. and Balague, C. 2007. Ethylene is one of the key elements for cell death and defense response control in the Arabidopsis lesion mimic mutant vad1. Plant Physiol. 145:465-477.   DOI   ScienceOn