• Title/Summary/Keyword: Protective factor

Search Result 803, Processing Time 0.027 seconds

Protective Effects of Membrane-Free Stem Cell Extract from H2O2-Induced Inflammation Responses in Human Periodontal Ligament Fibroblasts (무막줄기세포추출물의 H2O2에 의해 유도된 치주 세포의 염증 반응 보호 효과)

  • He, Mei Tong;Kim, Ji Hyun;Kim, Young Sil;Park, Hye Sook;Cho, Eun Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.6
    • /
    • pp.95-103
    • /
    • 2019
  • Periodontal inflammation, a major kind of periodontal diseases, is characterized to bleed, pain, and teeth loss, and it is resulted from oxidative stress. Membrane-free stem cell extract could avoid the immunogencity rejection by removal of cell membrane. In the present study, we investigated the protective effect of membrane-free stem cell extract from oxidative stress-induced periodontal inflammation in human periodontal ligament fibroblasts (HPLF). In the cell viability measurement, membrane-free stem cell extract showed significant increase of cell viability, compared with the $H_2O_2$-treated control group. To further investigation of molecular mechanisms, we measured inflammation and apoptosis related protein expressions. Membrane-free stem cell extract attenuated inflammation-related protein expressions such as nuclear factor kappa light chain enhancer of activated B cells, inducible nitric oxide synthase, and interleukin-6. In addition, the treatment of membrane-free stem cell extract decreased apoptotic protein expressions such as cleaved caspase-9, -3, poly (ADP-ribose) polymerase, and B-cell lymphoma 2 (Bcl-2)-associated X protein/Bcl-2 ratio in the $H_2O_2$-treated HPLF cells. In conclusion, membrane-free stem cell extract exhibited anti-oxidative stress effects by regulation of inflammation and apoptosis in HPLF, suggesting that it could be used as the treatment agents for periodontal inflammatory disease.

Protective Effects of Chrysanthemi Indici Flos Extract and Flaxseed Oil Mixture on HCl/ethanol-induced Acute Gastric Lesion Mice (급성 위염 동물 모델에서 감국(甘菊) 추출물과 아마인유(亞麻仁油) 혼합물의 위 점막 보호 효과)

  • Lee, Jin A;Kim, Soo Hyun;Kim, Min Ju;Ahn, Jeong-Hyun;Park, Hae-Jin;Lee, Woo Rak;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.19-28
    • /
    • 2018
  • Objectives : The objective of this study was to investigate the protective effect of Flaxseed oil and Chrysanthemi Indici Flos 50% ethanol extract in an HCl/ethanol induced acute gastritis model. Methods : ICR mice were divided into 6 groups; normal mice (Nor), gastritic mice with distilled water (Veh), gastritic mice with 10 mg/kg sucralfate (SC), gastritic mice with 16 g/㎏ Flaxseed oil (FO), gastritic mice with FO + 50 mg/kg Chrysanthemi Indici Flos (FCL), and gastritic mice with FO + 100 mg/kg Chrysanthemi Indici Flos (FCH). Then, mice were orally administered with 150 mM HCl/60% ethanol and caused acute gastritis. After 1 hr, mice were sacrificed, and blood and stomach tissue were collected. Results : Administration of FCL and FCH to mice prior to the induction of gastritis was found to reduce gastric injury. reactive oxygen species (ROS) and peroxy nitrite ($ONOO^-$) levels of stomach tissues were significantly decreased in FO, FCL, and FCH compared to Veh group. As results of stomach protein analyses, FCL and FCH effectively reduce inflammatory-related factors such as inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and interleukin 1 beta ($IL-1{\beta}$) in gastric lesion mice. In addition, nuclear factor kappa B p65 ($NF-{\kappa}B$ p65) and phosphorylation inhibitor of nuclear factor kappa $B{\alpha}(p-I{\kappa}B{\alpha})$ were down-regulated in FCL and FCH administrated gastric lesion mice. Conclusions : These results suggest that FCL and FCH has an inhibitory effect against gastric injury. Therefore, FCL and FCH has the potential to be used as a natural therapeutic drug.

Protective Effect of Betula Platyphylla on Ultraviolet B-irradiated HaCaT Keratinocytes (화피(樺皮) 에탄올 추출물의 Ultraviolet B로 자극한 피부 각질 세포 보호 작용)

  • Hag Soon Choi;Hyun Joo Kim;Hark Song Lee;Seung Won Paik;Ji Eun Kim;Yung Sun Song
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • Objectives: Betula Platyphylla(BP) has been used as a analgesic, anti-microbial, anti-oxidant drug in Eastern Asia. However, it is still unknown whether BP ethanol extract could exhibit the inhibitory activities against ultraviolet B(UVB)-induced skin injury on human keratinocytes, HaCaT cells. This study was aimed to investigate the protective activity of BP ethanol extract on UVB-irradiated skin injury in HaCaT cells. Methods: The skin injury model of HaCaT cells was established under UVB stimulation. HaCaT keratinocyte cells were pre-treated with BP ethanol extract for 1 h, and then stimulated with UVB. Then, the cells were harvested to measure the cell viability, production of reactive oxygen species(ROS), pro-inflammatory cytokines such as interleukin(IL) 1-beta, IL-6, and tumor necrosis factor(TNF)-𝛼, hyaluronidase, type 1 collagen, matrix metalloproteinase(MMP)s. In addition, we examined the mitogen activated protein kinases(MAPKs) and inhibitory kappa B alpha(I𝜅;-B𝛼) as inhibitory mechanisms of BP ethanol extract. Results: The treatment of BP ethanol extract inhibited the UVBinduced cell death and ROS production in HaCaT cells. BP ethanol extract treatment inhibited the UVB-induced increase of IL-1beta, IL-6, and TNF-𝛼. BP ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. BP ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of BP ethanol extract could inhibit the UVB-induced skin injury via deactivation of MAPKs and nuclear factor kappa B(NF-𝜅B) in HaCaT cells. This study could suggest that BP ethanol extract could be a beneficial agent to prevent skin damage or inflammation.

Suicidal Impulse caused by Stress in Korea : Focusing on mediational effects of Existent spirituality, Family Support, and Depression (한국인의 스트레스가 자살충동에 이르는 경로분석 : 실존적 영성, 가족의 지지, 우울의 매개효과를 중심으로)

  • Park, Jae Yeon;Lim, Yeon Ok;Yoon, Hyun Sook
    • Korean Journal of Social Welfare Studies
    • /
    • v.41 no.4
    • /
    • pp.81-105
    • /
    • 2010
  • This study is aimed to investigate the effects of stress on suicidal impulse, considering the mediating effects of existent spirituality, family support, and depression. The data, collected from 1,000 adults were examined by the statistics software SPSS 17.0 and AMOS 17.0, in which descriptive statistics, structural equation model analysis, and multi-group simultaneous analysis are utilized. The study shows that, from the structural equation modeling, the stress has positive effects on depression and suicidal impulses, but negative effects on existent spirituality. Existent spirituality acts as a protective factor, negatively affecting the suicidal impulse. Depression has positive effects on suicidal impulse. Therefore, existent spirituality and depression have mediational effects on the relationship between stress and suicidal impulse. The results of multi-group simultaneous analysis imply that there are no age and sex differences. In conclusion, social workers need to make great efforts to exterminate stress, and treat depression at the first priority, because the depression is a major sign of suicide. As a protective factor, strengthening existent spirituality is a very effective way to prevent a suicidal impulse.

Fate and Activity of Microorganism introduced into the Soil (토양에 투입된 미생물의 거동 및 활성)

  • Chung, Jae-Chun;Ju, Seul;Lee, Jae-Woong;Lee, Jung-Jae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.100-116
    • /
    • 2002
  • There are several purpose to introduce microorganism into the Soil. The major purpose is to promote plant growth and inhibit plant pathogens. The model example is to put in nitrogen fixing symbiotic bacteria, Pythium and Rhizobium. In order to achieve the intended goal, the introduced microorganism should survive and colonize with sufficient density. The survival of introduced microorganism depend upon biotic and abiotic factors. Predation and competition are important among biotic factor. Water tension, organic carbon, inorganic nutrients(N, P), pH are important factor among abiootic factor. Soil texture and distribution of soil pore are also important in the survival and colonization of introduced microorganism. Selection by soil ecosystem for inoculant is a crucial factor for colonization. Good example are control of autochtonous microorganism and the introduction of surfactant biodegrading Pseudomonas. Sometimes, carriers such as peat and montmorillonite can be added to help colonization. Carriers can protect introduced microorganism by supplying protective microhabitat. Organic polymer is also used as a carrier to immobilize bacteria or industrial enzymes. Examples of these carrier are calcium alginate, agarose and k-carrageenan. The function of these carrier is to provide microhabitat and help colonization for introduced microorganism.

  • PDF

Anti-oxidative Activity of Lycopene Via the Induction of HO-1 Expression by MAPK/Nrf2 Signaling Pathway in RAW 264.7 Cells (RAW 264.7 세포에서 Lycopene의 MAPK/Nrf2/HO-1 신호 전달 체계를 통한 항산화 효과)

  • Chung-Mu Park;Hyun An;Hyun-Seo Yoon
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • Purpose: Lycopene is abundantly contained in Tomatoes and is known for diverse biological activities such as antioxidant, anti-inflammatory, and anticancer effects. In this study, the antioxidative potential of lycopene was investigated through the induction of hemeoxygenase (HO)-1 by nuclear factor-erythroid 2 p45-related factor2 (Nrf2) and upstream signaling molecules, mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/Aktin RAW 264.7 cells. Methods: The antioxidative potential of lycopene against oxidative stress and its molecular mechanisms were determined by the cell viability assay, intracellular reactive oxygen species (ROS) formation assay, and Western blot analysis in RAW 264.7 cells. Results: Lycopene treatment significantly attenuated tert-butyl hydroperoxide (t-BHP) induced intracellular ROS formation in a dose-dependent manner without any cytotoxicity. In addition, 50 µM of lycopene for 6 h treatment induced potent HO-1 expression and its transcription factor, Nrf2. MAPK and PI3K/Aktwere also analyzed due to their critical roles in the regulation of cellular redox homeostasis against oxidative damage. As a result, phosphorylation of extracellular regulated kinase (ERK) was significantly induced by lycopene treatment while the activated status of c-Jun NH2-terminal kinase (JNK), p38, and Akt, were not given any effect. To confirm the antioxidative mechanism of HO-1 mediated by ERK activation, each selective inhibitor was employed in a protection assay, in which oxidative damage occurred by t-BHP. Lycopene, SnPP, and CoPP treatments reflected accelerated HO-1 expression could be a protective role against oxidative damage-initiated cell death. A selective inhibitor for ERK significantly inhibited the lycopene-induced cytoprotective effect but selective inhibitors for other signaling molecules did not attenuate the rate of t-BHP-induced cell death. Conclusion: In conclusion, lycopene potently scavenged intracellular ROS formation and enhanced the HO-1 mediated antioxidative potential through the modulation of Nrf2, MAPK signaling pathway in RAW 264.7 cells.

Protective Effect of Niclosamide on Lipopolysaccharide-induced Sepsis in Mice by Modulating STAT3 Pathway (니클로사마이드를 이용한 STAT3 신호전달 조절을 통해 LPS로 유발된 패혈증 동물모델 보호 효과 검증 연구)

  • Se Gwang JANG
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.55 no.4
    • /
    • pp.306-313
    • /
    • 2023
  • Sepsis is a systemic inflammatory response, with manifestations in multiple organs by pathogenic infection. Currently, there are no promising therapeutic strategies. Signal transducer and activator of transcription 3 (STAT3) is a cell signaling transcription factor. Niclosamide is an anti-helminthic drug approved by the Food and Drug Administration (FDA) as a potential STAT3 inhibitor. C57BL/6 mice were treated with an intraperitoneal injection of lipopolysaccharide (LPS). Niclosamide was administered orally 2 hours after the LPS injection. This study found that Niclosamide improved the survival and lung injury of LPS-induced mice. Niclosamide decreased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) in serum. The effects of Niclosamide on phosphoinositide 3-kinase (PI3K), AKT, nuclear factor-κB (NF-κB), and STAT3 signaling pathways were determined in the lung tissue by immunoblot analysis. Niclosamide reduced phosphorylation of PI3K, AKT, NF-κB, and STAT3 significantly. Furthermore, it reduced the phosphorylation of STAT3 by LPS stimulation in RAW 264.7 macrophages. Niclosamide also reduced the LPS-stimulated expression of proinflammatory mediators, including IL-6, TNF-α, and IL-1β. Niclosamide provides a new therapeutic strategy for murine sepsis models by suppressing the inflammatory response through STAT3 inhibition.

$\beta$-Glucan Suppresses LPS-stimulated NO Production Through the Down-regulation of iNOS Expression and $NF{\kappa}B$ Transactivation in RAW 264.7 Macrophages

  • Yang, Jeong-Lye;Jang, Ji-Hyun;Radhakrishnan, Vinodhkumar;Kim, Yang-Ha;Song, Young-Sun
    • Food Science and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.106-113
    • /
    • 2008
  • The antioxidant and anti-inflammatory protective effects of $\beta$-glucan from barley on RAW 264.7 murine macrophage cells induced by lipopolysaccharide (LPS) were examined. The RAW 264.7 murine macrophages were preincubated with various concentrations ($0-200\;{\mu}g/mL$) of $\beta$-glucan and stimulated with LPS to induce oxidative stress and inflammation. The $\beta$-glucan treatments were found to reduce thiobarbituric acid-reactive substance (TBARS) accumulation, and enhance glutathione levels and the activities of antioxidative enzymes, including superoxide dismutase (SOD), catalase, glutathione reductase, and glutathione peroxidase (GSH-px) in the LPS-stimulated macrophages as compared to the LPS-only treated cells. Nitric oxide (NO) production was significantly suppressed in a dose-dependent manner (p<0.05) with an $IC_{50}$ of $104\;{\mu}g/mL$. Further treatment with $\beta$-glucan at $200\;{\mu}g/mL$ suppressed NO production to 2% of the LPS-control, and suppressed the levels of inducible nitric oxide synthase (iNOS) protein and mRNA in a dose-dependent manner. The specific DNA binding activity of nuclear factor ${\kappa}B\;(NF{\kappa}B)$ was significantly suppressed by $\beta$-glucan treatment with an $IC_{50}$ of $220\;{\mu}g/mL$ in a dose-dependent manner. Finally, barley $\beta$-glucan ameliorates NO production and iNOS expression through the down-regulation of $NF{\kappa}B$ activity, which may be mediated by attenuated oxidative stress in RAW 264.7 macrophages.

Nutrient-derived Dietary Patterns and Risk of Colorectal Cancer: a Factor Analysis in Uruguay

  • Stefani, Eduardo De;Ronco, Alvaro L.;Boffetta, Paolo;Deneo-Pellegrini, Hugo;Correa, Pelayo;Acosta, Gisele;Mendilaharsu, Maria
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.1
    • /
    • pp.231-235
    • /
    • 2012
  • In order to explore the role of nutrients and bioactive related substances in colorectal cancer, we conducted a case-control in Uruguay, which is the country with the highest production of beef in the world. Six hundred and eleven (611) cases afflicted with colorectal cancer and 1,362 controls drawn from the same hospitals in the same time period were analyzed through unconditional multiple logistic regression. This base population was submitted to a principal components factor analysis and three factors were retained. They were labeled as the meat-based, plant-based, and carbohydrates patterns. They were rotated using orthogonal varimax method. The highest risk was positively associated with the meat-based pattern (OR for the highest quartile versus the lowest one 1.63, 95 % CI 1.22-2.18, P value for trend = 0.001), whereas the plant-based pattern was strongly protective (OR 0.60, 95 % CI 0.45-0.81, P value for trend <0.0001. The carbohydrates pattern was only positively associated with colon cancer risk (OR 1.46, 95 % CI 1.02-2.09). The meat-based pattern was rich in saturated fat, animal protein, cholesterol, and phosphorus, nutrients originated in red meat. Since herocyclic amines are formed in the well-done red meat through the action of amino acids and creatine, it is suggestive that this pattern could be an important etiologic agent for colorectal cancer.

Combination of Grapefruit and Rosemary Extracts Has Skin Protective Effect through MMPs, MAPKs, and the NF-κB Signaling Pathway In Vitro and In Vivo UVB-exposed Model

  • Yoon, Yeo-Cho;Choi, Hee-Jeong;Park, Ji-Hyun;Diniyah, Nurud;Shin, Hyun-A;Kim, Mi-Yeon
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.633-643
    • /
    • 2019
  • Long-term ultraviolet (UV) exposure accelerates the phenomenon of skin photo-aging by activating collagenase and elastase. In this study, we aimed to investigate the effects of a combination of grapefruit and rosemary extracts (cG&Re) on UVB-irradiated damage in HaCaT cells and dorsal mouse skin. In HaCaT cells, cG&Re recovered UVB-reduced cell viability and inhibited protein expression of mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases (p-Erk), c-Jun N-terminal kinases (p-JNK), and a class of MAPKs (p-P38). Also, cG&Re suppressed UVB-induced collagen and elastin degradation by decreasing matrix metalloproteinases (MMPs) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) expression, which is a transcription factor. Similar results were observed in dorsal mouse skin. Taken together, our data indicate that cG&Re prevent UVB-induced skin photo-aging due to collagen/elastin degradation via activation of MAPKs, MMPs, and the NF-κB signaling pathway in vitro and in vivo.