• 제목/요약/키워드: Protease

검색결과 2,445건 처리시간 0.03초

Characteristics of the Protease Inhibitor Purified from Chum Salmon (Oncorhynchus keta) Eggs

  • Kim, Kenn-Yeong;Ustadi, Ustadi;Kim, Sang-Moo
    • Food Science and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.28-32
    • /
    • 2006
  • Protease inhibitor of 72.6 kDa was successively purified from chum salmon (Oncorhynchus keta) eggs by ion exchange, gel permeation, and affinity chromatographies. Protease inhibitor was purified with yield and purification fold of 1.50% and 58.11, respectively. SDS-PAGE results showed purified protease inhibitor consisted of two protein subunits of 54.0 and 18.6 kDa. Chum salmon inhibitor exhibited stability between 20 and $40^{\circ}C$ in weak acid environment (PH 6), and inhibited papain and cathepsin, members of cysteine protease, but not chymotrypsin. The protein inhibited cathepsin more effectively than did egg white protease inhibitor, whereas the reverse was true for papain. These results indicate chum salmon egg inhibitor is heterodimer, thus the inhibitor was classified as cysteine protease inhibitor.

컬럼 크로마토그라피에 의한 아스퍼질러스 계통의 $\alpha$-아미라제 및 프로테아제의 결정화 2 (Crytallization of $\alpha$-amylase and protease of ASP. oryzae from Column Chromatograph)

  • 서항원
    • 미생물학회지
    • /
    • 제10권2호
    • /
    • pp.69-72
    • /
    • 1972
  • The studies of neutral protease which was obtained by passing through Sephadex A-50 had been reported not long ago. Since that time the author also conducted the research to be investigated the physical properties of acid protease absorbed by Sephadex A-50. The results are summarized as follows : 1) Cultivating Aspergillus oryza SHW-131 on a wheat bran medium, the acid protease including neutral protease is very sensitive for temperature. 3) Activity of acid protease is very sensitive for temeprature. 3) This enzyme was proved, what is called, to be a sort of weak acid protease. It's optimum pH was lied in about 4.5. 4) A range of pH for stability is far more narrow than any other protease. 5) The acid protease is dropped by EDTA solution in its activity.

  • PDF

오징어 내장에서 분리한 Protease 특성의 모니터링 (Monitoring Characteristics of Protease Isolated from Squid Viscera)

  • 서지형;정용진;이기동;이명희
    • 동아시아식생활학회지
    • /
    • 제9권2호
    • /
    • pp.195-199
    • /
    • 1999
  • 오징어 내장에서 분리한 protease를 중심합성 계획법을 이용해서 제한조건을 동일하게 하고 pH와 온도를 변수로 protease활성을 모니터링 하였다. 그 결과 protease활성은 41.75$^{\circ}C$, pH 6.02에서 78.65unit로 최고치를 나타내었으며, 이때 $R^2$는 0.8461로서 10% 이내에서 유의성이 인정되었다. 또한 오징어 내장 protease는 50mM의 $Na^{+}$ 첨가에서 활성이 저해되었으나 $Mg_2$$^{+}$에 의해서는 상승효과를 보였으며 km 값은 0.12mM이었다.

  • PDF

프로테아제와 리파제의 혼합에 따른 세척성의 변화 (Effects of Mixing Protease and Lipase on Detergency)

  • 서수진;박정희
    • 한국의류학회지
    • /
    • 제24권2호
    • /
    • pp.205-213
    • /
    • 2000
  • This study investigated the effect of mixing protease and lipase on detergency. The detergency of protein soiled, oil soiled and protein-oil soiled cloths and the relative hydrolytic activity of enzymes were examined. The protease-lipase added detergent solution was most effective for the removal of protein in protein-oil soiled cloths. This is because the lipase removed the protein that was physically bound to oil as well as the protease removed the protein. The protease added detergent solution was second effective, the lipase added detergent solution was third effective, and the detergent solution without protease and lipase was the least effective. The protease-lipase added detergent solution was also most effective in the oil removal from protein-oil soiled cloths. Unlike in protein removal, however, the protease added detergent solution was more effective in oil removal than the lipase added detergent solution. This is because the removal of oil bound to protein by protease was more effective than the removal of oil by lipase. In soiling-washing cycles, however, the effects of lipase increased, and as a result, the detergency of protease added detergent solution and the lipase added detergent solution became similar.

  • PDF

Bacillus sp.가 생산하는 호알카리성 Protease의 부분정제 및 특성 (Partial Purification and Characterization of the Alkaline Protease from Baccillus sp.)

  • 안장우;오태광;박용하;박관하
    • 한국미생물·생명공학회지
    • /
    • 제18권4호
    • /
    • pp.344-351
    • /
    • 1990
  • 계명활성제 내성이 있으면서 호알카리성인 protease를 생산하는 미생물을 토양에서 분리하였다. 분리된 미생물을 형태적, 생리학적, 화학분류학적 및 5S RNA 분석으로 동정한 결과 Bacillus sp.인 것으로 판명되었다. 호알카리성 protease는 황산암모늄 분획, DEAE-Cellulose, CM-Cellulose, Sephadex G-100 column chromatogrphy로 분리, 정제하였다. 정제된 호알카리성 protease는 casein에 대하여 pH6.0에서 11.0 사이에서 안정성을 나타내었다. 분리된 효소의 작용 최적 온도는 $55^{\circ}C$이었다. 이 효소는 diisopropyl fluorophosphate(DFP)로 완전히 불활성화되는 것으로 보아 serine protease로 추정되며 계면활성제의 존재하에서도 안정하였다.

  • PDF

Purification and Characterization of Two Alkaline Proteases Produced by Pseudomonas sp. BK7

  • 이은구;박은희;현형환
    • Journal of Microbiology and Biotechnology
    • /
    • 제10권5호
    • /
    • pp.667-667
    • /
    • 2000
  • Pseudomonas sp. BK7, an alkalophile, displayed the highest growth and protease activity when grown in a fermenter which was controlled at a pH level of 9.0, and the enzyme production was significantly enganced by the increase of agitation speed. Two formas of alkaline proteases (BK7-1 and BK7-2) were fractionated and purified to near homogeneity. Protease BK7-1 was purified through CM-Sepharose CL-6B and Sephadex G-75 column chromatographies, and Protease BK7-2 was purified through CM-Sepharose CL-6B and Sephadex G-75 column chromatographies, and Protease BK7-2 was purified through CM-Sepharose CL-6B, DEAE-Sepharose, and Sephadex G-75 column chromatographies. The molecular weights of proteases BK7-1 and BK7-2 determined by gel filtration chromatography were 20,700 and 40,800, respectively. The $K_m$ value, isoelectric point, and optimum pH of protease BK7-1 were 2.55 mg/ml, 11.0 and 11.0, respectively, whereas those of protease BK7-2 were 1.57 mg/ml, 7.2, and 10.0, respectively. Both protease were practically stable in the pH range of 5-11. The optimum temperatures for the activities of both protease BK7-1 and BK7-2 were 50℃ and 45℃, respectively. About 56% of the original protease BK7-2 activity remained after being treated at 50℃ for 30 min but protease BK7-1 was rapidly inactivated at above 25℃. Both proteases were completely inhibited by phenylmethane sulfonyl fluoride, a serine protease inhibitor. Protease BK7-2 was stable against EDTA, EGTA, STP, and detergents such as SDS and LAS, whereas protease BK7-1 was found to be unstable.

Purification and Characterisation of a Burkholderia pseudomallei Protease Expressed in Recombinant E. coli

  • Ling, Jessmi M.L.;Nathan, Sheila;Hin, Lee Kok;Mohamed, Rahmah
    • BMB Reports
    • /
    • 제34권6호
    • /
    • pp.509-516
    • /
    • 2001
  • A genomic DNA fragment that contains the gene, which codes for a novel extracellular serine protease in Burkholderia pseudomallei, was cloned by using pQE40 as a vector. It was maintained in Escherichia coli JM109. The expression of the gene(s) resulted in the production of a 52 kDa protease. The recombinant protease was purified from the culture filtrate via ammonium sulfate fractionation, gel filtration, and anion-exchange chromatography. The purified protease had an optimum pH and temperature of pH 8.9 and $38^{\circ}C$, respectively. The protease activity was inhibited by EGTA, EDTA, and PMSF, but not 1,10-phenanthroline. The first 11 amino acid residues from the N-terminus of the purified protease were identified as LAPNDPYYYGY. PNDPYY was found to show homology to the Bacillus cereus microbial serine protease and B. subtilis PD498 serine protease. These results indicate that the protease that was purified in this study is an extracellular calcium-dependent serine protease. The purified protease was able to digest the human serum 19A, IgG, albumin, and transferrin, as well as bovine muscle actin and myosin. Furthermore, it was able to promote or cause dermonecrosis in experimental rabbits. These results propose the possible role of a novel B. pseudomallei extracellular calcium-dependent serine protease in the virulence of the pathogen.

  • PDF

Phytase, Protease 및 Phytase와 Protease 혼합 효소처리가 폐대두박의 단백질 추출율 및 그 기능성에 미치는 영향 (Effect of Phytase, Protease and the Mixed Enzyme of Phytase and Protease on the Extraction and Properteis of the Protein from Abolished Soybean Meal)

  • 조영제;천성숙
    • 한국식품영양과학회지
    • /
    • 제29권1호
    • /
    • pp.57-63
    • /
    • 2000
  • To extract insoluble proteins from abolished soybean meal, the meal was treatesd with phytase and protease produced by Aspergillus sp. SM-15 and Aspergillus sp. MS-18. The extraction of insoluble soybean protein was increased at alkaline range more than pH 5 in case of phytase, pH 7 to 11 in case of protease and pH 5 to 12 in case of the mixed enzyme of phytase and protease. The optimum extraction temperature of insoluble protein was 5$0^{\circ}C$ for phytase and the mixed enzyme of phytase and protease, and 6$0^{\circ}C$ for protease. The optimum treatment time for extraction of protein was 9 hrs for phytase, 11 hrs for protease and the mixed enzyme of phytase and protease and optimum unit of enzyme for extraction of protein was 600 unit, 40 unit and 900 unit+60 unit in case of phytase, protease, phytase and protease, respectively. The treatment of mixed enzyme showed higher extracton rate of protein than single enzyme treatment. The foaming capacity, foaming stability, emulsion capacity, and emulsion stability of soybean meal protein by the treatment of the enzymes increased at all pH range. Further more oil absorption as well as water absorption capacities by the treatment of the enzymes were also increased. The functional properteis of the soybean meal protein treated by the mixed enzyme were higher than those of soybean meal protein treated by the single enzyme.

  • PDF

반응표면분석법을 통한 Enterobacteriaceae sp. PAMC 25617의 protease 생산배지 최적화 (Optimization of Medium for Protease Production by Enterobacteriaceae sp. PAMC 25617 by Response Surface Methodology)

  • 김현도;윤철원;최종일;한세종
    • Korean Chemical Engineering Research
    • /
    • 제53권4호
    • /
    • pp.524-529
    • /
    • 2015
  • 본 논문에서는 저온활성 protease의 생산을 최적화하기 위하여 극지 미생물인 Enterobacteriaceae sp. PAMC 25617의 반응표면분석법을 이용한 배지의 최적화를 수행하였다. One-factor-at-a-time 방법을 이용하여 yeast extract, TritonX-100이 protease의 생산에 영향을 미치는 주요인자인 것을 확인하였다. 물리적인 환경 요인으로 pH를 추가하여 반응표면분석 방법을 이용한 최대 protease 생산 농도를 갖는 각 인자들의 농도를 확인한 결과 5 g/L peptone, 3 g/L malt extract, 10 g/L $C_6H_{12}O_6$, 6.690 g/L yeast extract, 0.018 g/L TritonX-100의 농도에 pH 6.777의 조건에서 미생물을 배양하였을 경우, 최대 10.049 U/L의 protease가 생산될 수 있는 것으로 예측되었다. 실제 배양 결과 8.03 U/L의 protease가 얻어졌으며, 최적화 이전의 생산농도와 비교하여 150% 이상의 증가를 이루었다. 결과적으로 배지최적화를 통한 protease 생산량의 증가에 반응표면분석법의 적용이 유용하다는 것을 확인할 수 있는다. 이러한 결과로부터, 배지 최적화를 이용한 극지 미생물 유래 cold-adapted protease 생산량의 증가가 여러 산업 분야에서 유용하게 이용될 수 있을 것으로 생각된다.

Arthrobacter luteus로부터 유래한 염기성 AL-Protease의 효소학적 성질 및 활성 아미노산 잔기의 검색 (Enzymological Properties of the Alkaline AL-Protease from Arthrobacter luteus and Detection of Its Active Amino Acid Residue)

  • 오홍록;상원태생;반진승
    • 한국식품영양과학회지
    • /
    • 제13권2호
    • /
    • pp.193-204
    • /
    • 1984
  • Zymolyase 조효소로부터 분리, 정제되었고, 효모세포벽 용해 촉진물질로 밝혀진 바 있는 Arthrobacter luteus로부터 유래한 염기성 protease(AL-protease)의 효소학적 성질 및 활성 아미노산 잔기를 검색한 결과는 다음과 같다. 1. AL-pretense는 저해제 DFP 및 PMSF에 의해서 그 Protease 활성 및 용해 촉진활성이 동시에 완전히 소멸 되었으며, 그 저해 반응속도는 chymotrypsin에 대한 것에 비하여 대단히 완만하였다. 1.반응에서 AL-protease와 DFP의 결합 mole비는 1:1로 추정 되었다. 2. 정제된 AL-protease의 동결건조품 중에는 종래효모세포벽 용해반응에 관여하는 것으로 알려진 yeast phosphomannase를 비롯한 다당류 가수분해효소들의 활성은 그 어느 것도 인정되지 않았다. 3. AL-protease의 casein에 대한 최적 pH 및 최적 온도는 pH 10.5와 $65^{\circ}C$이었고, 그 활성은 pH 5${\sim}$11 사이와 $65^{\circ}C$이하에서 안정하였다. 또한, AL-Protease의 활성에 미치는 여러가지 금속이온의 영향은 인정되지 않았다. 4. [$^{32}P$]-DFP에 의하여 화학수식된 [$^{32}P$]-DIP-AL-protease에 대한 활성부위의 아미노산 잔기를 검색, 동정하기 위하여 조제용 PAG-전기영동, SDS-PAG-전기영동, Dowex 이온교환 크로마토그래피 및 고압 여지 전기영동을 실시하였고, 그 결과, AL-protease는 활성 부위에 1분자당 1 mole의 serine 잔기를 가지는 염기성 protease로 밝혀졌다.

  • PDF