• Title/Summary/Keyword: Protaetia brevitarsis

Search Result 120, Processing Time 0.03 seconds

Comparison of clay and charcoal as feed additives for Protaetia brevitarsis (Coleoptera: Scarabaeidae)

  • Kim, Hong Geun;Park, Kwan-Ho;Lee, Seokhyun;Kwak, Kyu-Won;Choi, Mun Suk;Choi, Ji-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.1
    • /
    • pp.25-29
    • /
    • 2015
  • The white-spotted chafer, Protaetia brevitarsis (Coleoptera: Scarabaeidae), has been traditionally used in Korea as a medicine for preventing liver-related diseases and suppressing liver cancer. Therefore, this insect is economically important and is commercially reared and sold in Korea. Recently, P. brevitarsis was listed as a temporal food ingredient by the Korean Ministry of Food and Drug Safety. Given the increasing economic importance of this beetle, we have sought to improve rearing conditions for its commercial production. In this study, we compared the effects of two food supplements, clay and charcoal, on the growth of second instar larvae of P. brevitarsis. Clay and charcoal are generally known as good adsorbent for removal of contaminating substances in insect feed. We fed second instar P. brevitarsis larvae a commercial diet consisting of fermented sawdust with seven different combinations of clay and/or activated charcoal, and measured their effects on weight gain for approximately 17 wk until larvae pupated. We found that addition of clay at 2.5% w/w of the fermented sawdust diet had no negative effect on weight gain of second instar P. brevitarsis larvae and thus may improve the quality of P. brevitarsis as a commercial food.

Quality characteristics and protein digestibility of Protaetia brevitarsis larvae

  • Lee, Seonmin;Choi, Yun-Sang;Jo, Kyung;Kim, Tae-Kyung;Yong, Hae In;Jung, Samooel
    • Journal of Animal Science and Technology
    • /
    • v.62 no.5
    • /
    • pp.741-752
    • /
    • 2020
  • Herein, the in vitro protein digestibility of lyophilized Protaetia brevitarsis larvae flour with and without defatting using 70% ethanol was compared with beef loin. Proximate analysis showed that the defatted larvae contained the highest protein content (p < 0.05). The viable counts of total aerobic bacteria, Escherichia coli, and coliform bacteria decreased significantly after defatting the larval samples with 70% ethanol (p < 0.05). Measurement of α-amino group content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed higher amounts of low molecular weight proteins in the larvae compared to beef loin (p < 0.05). After in vitro digestion, the degree of protein hydrolysis of the digesta was higher for both larvae samples compared to beef loin (p < 0.05). No change was observed in the in vitro larval protein digestibility after defatting. These results highlight the excellent protein digestibility of P. brevitarsis larvae with high protein content. Defatting insect flour with 70% ethanol could enhance microbial safety while maintaining excellent protein digestibility.

A LIM Protein Gene Homologue of Protaetia brevitarsis: cDNA Cloning and mRNA Expression

  • Kim Iksoo;Choi Yong Soo;Lee Sun Young;Kim Mi Ae;Kim Seong Ryul;Hwang Jae Sam;Jin Byung Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.11 no.1
    • /
    • pp.71-74
    • /
    • 2005
  • A LIM protein gene homologue of the CRP (cysteine­rich protein) family in the whiter-spotted flower chafer, Protaetia brevitarsis, was cloned. The P. brevitarsis LIM protein cDNA encodes a 92 amino acid polypep­tide with a predicted molecular mass of 10,030 Da and a pI of 8.57. The P. brevitarsis LIM protein contains the cysteine-rich consensus sequence of LIM domain and the glycine-rich consensus sequence observed in the cysteine-rich protein family 1 (CRPl). The potential nuclear targeting signal is retained. The deduced amino acid sequence of the P. brevitarsis LIM protein cDNA showed 92$\%$ identity to another beetle, Apriona germari LIM protein. Northern blot analysis showed that P. brevitarsis LIM protein is highly expressed in epidermis and midgut, but not in the fat body.

A Grub (Protaetia brevitarsis seulensis) Rearing Technique Using Cellulose-digesting Bacteria and Natural Recycling of Rearing Byproduct to an Organic Fertilizer (셀룰로오스 분해균을 이용한 흰점박이꽃무지(Protaetia brevitarsis seulensis) 사육과 부산물 응용 기술)

  • Kang, Sang-Jin;Park, Chun-Woo;Han, Sang-Chan;Yi, Young-Keun;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.44 no.3 s.140
    • /
    • pp.189-197
    • /
    • 2005
  • Cellulose-digesting bacteria were isolated from hindgut of Allomyrina dichotoma (Coleoptera: Dynastidae). The bacterial isolates were identified as Yersinia sp. and Bacillus sp. The addition of the identified bacteria to diet increased growth rate of the cetoniid beetle, Protaetia brevitarsis senlensis (Coleoptera: Cetoniidae), probably by digesting cellulose nutrient contained in the oak tree sawdust diet. An additive of wheat flour at more than 10% to the sawdust diet significantly enhanced growth of P. brevitarsis senlensis. Trimmed branches of apple trees have been disposed in the apple farms and could be used for a diet component of the cetoniid beetle when the cellulose-digesting bacteria were mixed with the derived-sawdust. Resulting manure from mass rearing of P. brevitarsis senlensis contained high organic matters and trace amounts of toxic metals. When the manure were splayed on soil, it was effective as a natural compost and significantly stimulated lettuce growth. This research suggests a model technology to use cellulose-digesting bacteria to use for culturing grub, which results in natural recycles of trimmed branches in apple farms as grub diet, and to use grub manure as a natural compost.

Bacteria-Induced Antibiotic Peptide, Protaecin from the White-Spotted Flower Chafer, Protaetia brevitarsis (Protaetia brevitarsis가 생산하는 세균 유도성 항생황성물질, Protaecin)

  • Park, Ho-Yong;Park, Doo-Sang;Park, Soon-Sik;Oh, Hyun-Woo;Shin, Sang-Woon;Lee, Hyeong-Kyu;Joo, Chang-Kyeong;Hong, Soon-Duck
    • Microbiology and Biotechnology Letters
    • /
    • v.22 no.1
    • /
    • pp.52-58
    • /
    • 1994
  • The induced antibiotic peptides were isolatde from the white-spotted folwer chafer, Protaetia brevitarsis by injection of E. coli suspension to the larvae of the insect. The antibacterial activity of the peptides were assayed by the plate growth ingibition method, and were purified by ion-exchange chromatography, reversed-phase HPLC, ion-exchange HPLC and SDS-PAGE etc. The peptides were estimated as 9 kDa in molecular weight and named Protaecin I and Protaecin II, respectively. Protaecin I and II have strong antibacterial activities against Gram-positivie and/or Gram-negative bacteria, and they are stable in the heat treatment and in the range of pH 2-12.

  • PDF

The Antifungal Effect of Rhus verniciflua Stokes against Metarhizium anisopliae on the Edible Insect, Protaetia brevitarsis (Coleoptera) (흰점박이꽃무지에 발생하는 병원성 곰팡이 Metarhizium anisopliae에 대한 옻나무 추출액의 항진균 효과)

  • Kim, Nang-Hee;Song, Myung-Ha;Kim, Eunsun;Kim, Yongsoon;Park, Kwan-Ho;Kim, Sunyoung
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.4
    • /
    • pp.374-379
    • /
    • 2020
  • The white-spotted flower chafer (Protaetia brevitarsis) larva is one of the insects widely-used for edible and medicinal purposes in Eastern Asia. As a result of increasing demand for P. brevitarsis, massrearing systems in domestic farms have become necessary. However, the mass-rearing of larvae under confined rearing conditions could provide conditions unsuitable for preventing entomopathogenic diseases. Metarhizium anisopliae is the strongest fatal entomopathogenic fungus against P. brevitarsis. For inhibition of M. anisopliae, we used a Rhus verniciflua Stokes extract that has antifungal components. We investigated the inhibitory effect of the R. verniciflua extract at 1%, 5%, and 10% concentrations. The results showed that a 1% R. verniciflua extract added to sawdust produced a significantly low P. brevitarsis mortality rate. Moreover, extract-treated groups were heavier and had a shorter larval period than those of the untreated group. Consequently, we suggest that using an R. verniciflua extract can reduce the P. brevitarsis fatality rate from entomopathogenic fungi (e.g. M. anisopliae), resulting in more effective mass-rearing systems for P. brevitarsis.

Analysis of the Inhibitory Effect of two Bacterial Strains on Metarhizium anisopliae Induced Fatality Rates in Protaetia Brevitarsis

  • Kwak, Kyu-Won;Nam, Sung-Hee;Park, Kwan-Ho;Lee, Heuisam;Han, Myung-Sae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.37 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • Bacterial species, Bacillus amyloliquefaciens and Lactobacillus species (L. sp.5-1), are known to inhibit the growth of pathogenic bacteria and fungi. Metarhizium anisopliae is a pathogenic fungal species which causes fatal damage to P. brevitarsis populations. Therefore, we investigated the inhibitory effect of B. amyloliquefaciens and L. sp. 5-1 on M. anisopliae induced fatality rates in P. brevitarsis. Samples of M. anisopliae-infected sawdust were treated with strain B. amyloliquefaciens KACC10116, strain L. sp. 5-1 KACC19351, and a combination of the two. P. brevitarsis were fed treated sawdust samples, and their subsequent fatality rate was monitored. The fatality rate fell below 1.5% after 10 days and decreased by approximately 40% after 15 days. On average, the fatality rate decreased by 20%, compared to the control. The difference in the decrease in fatality rate between B. amyloliquefaciens treatment and L. sp. 5-1 treatment was not significant. Results indicate that both strains exhibit high anti-fungal activity, which may be useful in environmental purification efforts. These strains may be used for effective prevention of fungal infection in P. brevitarsis.

Effect of Saccharomyces cerevisiae consumption on the pathogenicity of Beauveria bassiana in Protaetia brevitarsis

  • Kwak, Kyu-Won;Han, Myung-Sae;Nam, Sung-Hee;Park, Kwan-Ho;Kim, Eun-Sun;Lee, Seokhyun;Song, Myung-Ha;Kim, Wontae;Choi, Ji-Young
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Beauveria bassiana is a common fungal pathogen of Protaetia brevitarsis larvae, and although it is less common than Metarhizium anisopliae , the pathogen still poses a great risk to humans and animals that consume infected insects, owing to B. bassiana's production of toxins like beauvericin and mycotoxin. Interestingly, the beneficial microorganism Saccharomyces cerevisiae possesses antifungal properties. In the present study, we found that S. cerevisiae inhibited the growth of B. bassiana by 97% and that S. cerevisiae failed to harm P. brevitarsis when administered via intracoelomic injection (1×107 cfu/mL). In addition, we also found that S. cerevisiae consumption increased the survival time of percutaneously infected P. brevitarsis larvae by 5 d and reduced the mortality of infected larvae by 12%. Therefore, S. cerevisiae is expected to be useful in the prevention and control of B. bassiana in the production of P. brevitarsis larvae.

Ultrastructure Characterization of Hemcytes in Larvae of Protaetia brevitarsis seulensis (흰점박이꽃무지 유충의 혈구세포에 대한 형태학적 특성)

  • Cho, Saeyoull
    • Korean journal of applied entomology
    • /
    • v.55 no.3
    • /
    • pp.215-221
    • /
    • 2016
  • In this study, we used electron microscopic analysis to characterize the hemocytes in the last larva of Protaetia brevitarsis seulensis (Colbe) (Cetoniidae, Coleoptera). Granulocytes (GR), plasmatocytes (PL), oenocytoids (OE), spherulocytes (SP), prohemocytes (PR) and adipohemocytes (AD) were classified based on their size and ultrastructural differences in the circulating hemocytes. Many dark granules (<$1{\mu}m$ in diameter) in the GR's cytoplasm were observed and well-developed mitochondria, endoplasmic reticulum (ER), nucleus, and Golgi complex were also seen. After microorganisms infected, the GRs were morphologically activated and phagocytosed them. Especially, dark granules (lysosomes) were fused themselves and these bigger granules finally agglomerate together with microorganisms. Other hemocytes seem to have no immune functions.