Browse > Article
http://dx.doi.org/10.5656/KSAE.2016.05.0.028

Ultrastructure Characterization of Hemcytes in Larvae of Protaetia brevitarsis seulensis  

Cho, Saeyoull (Department of Applied Biology, Division of Bioresource Sciences, College of Agriculture and Life Science, Environment Friendly Agriculture Center, Kangwon National University)
Publication Information
Korean journal of applied entomology / v.55, no.3, 2016 , pp. 215-221 More about this Journal
Abstract
In this study, we used electron microscopic analysis to characterize the hemocytes in the last larva of Protaetia brevitarsis seulensis (Colbe) (Cetoniidae, Coleoptera). Granulocytes (GR), plasmatocytes (PL), oenocytoids (OE), spherulocytes (SP), prohemocytes (PR) and adipohemocytes (AD) were classified based on their size and ultrastructural differences in the circulating hemocytes. Many dark granules (<$1{\mu}m$ in diameter) in the GR's cytoplasm were observed and well-developed mitochondria, endoplasmic reticulum (ER), nucleus, and Golgi complex were also seen. After microorganisms infected, the GRs were morphologically activated and phagocytosed them. Especially, dark granules (lysosomes) were fused themselves and these bigger granules finally agglomerate together with microorganisms. Other hemocytes seem to have no immune functions.
Keywords
Protaetia brevitarsis seulensis; Granulocytes; Cellular immune response; Lysosomes;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Alves e Silva, T.L., Vasconcellos, L.R.C., Lopes, A.H., Souto-Padron, T., 2013. The immune response of hemocytes of the insect Oncopeltus fasciatus against the Flagellate Phytomonas serpens. PLoS ONE 8, e72076.   DOI
2 Arnold, J.W., 1974. The hemocytes of insects. Academic Press. New York, U.A.S. p. 201-254.
3 Giglio, A., Battistella, S., Talarico, F.F., Brandmayr, T.Z., Giulianini, P.G., 2008. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus) lefebvrei Dejean 1826 (Coleoptera, Carabidae):Cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron. 39, 552-558.   DOI
4 Giulianini, P.G., Bertolo, F., Battistella, S., Amirante. G.A., 2003. Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera, Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Tissue Cell 35, 243-251.   DOI
5 Gupta, A.P., 1979. Insect hemocytes development, forms, functions and techniques. Cambridge University Press. New York, U.S.A. p. 83.
6 Gupta, A.P., 1985. Cellular elements in hemolymph. Pergamon Press. Oxford, Engalnd. p. 401-451.
7 Hoffmann, J.A., 2003. The immune response of Drosophila. Nature 426, 33-38.   DOI
8 Huang, F., Shi, M., Chen, Y.F., Cao, T.T., Chen, X.X., 2008. Oogenesis of Diadegma semiclausum (Hymenoptera: Ichneumonidae) and its associated polydnavirus. Microsc. Res. Tech. 71, 676-683.   DOI
9 Hwang, S., Bang, K., Lee, J., Cho, S. 2015. Circulating hemocytes from larvae of the Japanese rhinoceros beetle Allomyrina dichotoma (Linnaeus) (Coleoptera: Scarabaeidae) and the cellular immune response to microorganisms. PLoS ONE 10, e0128519.   DOI
10 Jones, J.C., 1962. Current concepts concerning insect hemocytes. Rev. Am. Zool. 2, 209-246.   DOI
11 Kwon, H., Bang, K., Cho, S., 2014. Characterization of the hemocytes in larvae of Protaetia brevitarsis seulensis: Involvement of granulocyte-mediated phagocytosis. PLoS ONE 9, e103620.   DOI
12 Kwon, O., 2009. Effect of different diets on larval growth of Protaetia brevitarsis seulensis (Kolbe)(Coleoptera:Cetoniidae). Entomol. Res. 39, 152-154.   DOI
13 Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743.   DOI
14 Pandey, J.P., Tiwari, R.K., 2012. An overview of insect hemocyte science and its future application in applied and iomedical fields. Am. J. Biochem. Mole. Biol. 2, 82-105.   DOI
15 Liu, F., Xu, Q., Zhang, Q., Lu, A., Beerntsen, B.T., Ling, E., 2013. Hemocytes and hematopoiesis in the silkworm, Bombyx mori Insect Sci. J. 10, 102-109.
16 Manachini, B., Arizza, V., Parrinello, D., Parrinello, N., 2011. Hemocytes of Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) and their response to Saccharomyces cerevisiae and Bacillus thuringiensis. Invertebr. Pathol. 106, 360-365.   DOI
17 Milton, C.C., Grusche, F.A., Degoutin, J.L., Yu, E., Dai, Q., Lai, E.C., Harvey, K.F., 2014. The Hippo pathway regulates hematopoiesis in Drosophila melanogaster. Curr. Biol. 24, 2673-2680.   DOI
18 Silverman, N., Maniatis, T., 2001. $NF-{\kappa}B$ signaling pathways in mammalian and insect innate immunity. Genes & Dev. 15, 2321-2342.   DOI
19 Strand, M.R., 2008. The insect cellular immune response. Insect Sci. 15, 1-14.   DOI
20 Tauszig, S., Emmanuelle, J., Hoffmann, J.A., Imler, J., 2000. Toll-related receptors and the control of antimicrobial peptide expression in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 97, 10520-10525.   DOI
21 Tsakas, S,, Marmaras, V.J., 2010. Insect immunity and its signaling: an overview. Invertebrate Surv. J. 7, 228-238.
22 Williams, M.J., 2007. Drosophila hemopoiesis and cellular immunity. J. Immunol. 178, 4711-4716.   DOI
23 Yamashita, M., Iwabuchi, K., 2001. Bombyx mori prohemocyte division and differentiation in individual microcultures. J. Insect Physiol. 47, 325-331.   DOI