Browse > Article
http://dx.doi.org/10.5187/jast.2020.62.5.741

Quality characteristics and protein digestibility of Protaetia brevitarsis larvae  

Lee, Seonmin (Division of Animal and Dairy Science, Chungnam National University)
Choi, Yun-Sang (Research Group of Food Processing, Korea Food Research Institute)
Jo, Kyung (Division of Animal and Dairy Science, Chungnam National University)
Kim, Tae-Kyung (Research Group of Food Processing, Korea Food Research Institute)
Yong, Hae In (Research Group of Food Processing, Korea Food Research Institute)
Jung, Samooel (Division of Animal and Dairy Science, Chungnam National University)
Publication Information
Journal of Animal Science and Technology / v.62, no.5, 2020 , pp. 741-752 More about this Journal
Abstract
Herein, the in vitro protein digestibility of lyophilized Protaetia brevitarsis larvae flour with and without defatting using 70% ethanol was compared with beef loin. Proximate analysis showed that the defatted larvae contained the highest protein content (p < 0.05). The viable counts of total aerobic bacteria, Escherichia coli, and coliform bacteria decreased significantly after defatting the larval samples with 70% ethanol (p < 0.05). Measurement of α-amino group content and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed higher amounts of low molecular weight proteins in the larvae compared to beef loin (p < 0.05). After in vitro digestion, the degree of protein hydrolysis of the digesta was higher for both larvae samples compared to beef loin (p < 0.05). No change was observed in the in vitro larval protein digestibility after defatting. These results highlight the excellent protein digestibility of P. brevitarsis larvae with high protein content. Defatting insect flour with 70% ethanol could enhance microbial safety while maintaining excellent protein digestibility.
Keywords
Protaetia brevitarsis; Protein digestibility; Edible insect; Beef loin;
Citations & Related Records
Times Cited By KSCI : 10  (Citation Analysis)
연도 인용수 순위
1 Lee HS, Ryu HJ, Song HJ, Lee SO. Enzymatic preparation and antioxidant activities of protein hydrolysates from protaetia brevitarsis larvae. J Korean Soc Food Sci Nutr. 2017;46:1164-70. https://doi.org/10.3746/jkfn.2017.46.10.1164   DOI
2 AOAC [Association of Official Analytical Chemists] International. Official methods of analysis of AOAC International. 18th ed. Washington, DC: AOAC International; 2010.
3 Jung S, Kim HJ, Park S, Yong HI, Choe JH, Jeon HJ, et al. The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Sci. 2015;108:132-7. https://doi.org/10.1016/j.meatsci.2015.06.009   DOI
4 Lee S, Jo K, Hur SJ, Choi YS, Kim HJ, Jung S. Low protein digestibility of beef puree in infant in vitro digestion model. Food Sci Anim Resour. 2019;39:1000-7. https://doi.org/10.5851/kosfa.2019.e73   DOI
5 Kim HS, Hur SJ. Effect of six different starter cultures on the concentration of residual nitrite in fermented sausages during in vitro human digestion. Food Chem. 2018;239:556-60. https://doi.org/10.1016/j.foodchem.2017.06.160   DOI
6 Yi L, Van Boekel MA, Boeren S, Lakemond CM. Protein identification and in vitro digestion of fractions from Tenebrio molitor. Eur Food Res Technol. 2016;242:1285-97. https://doi.org/10.1007/s00217-015-2632-6   DOI
7 Church FC, Swaisgood HE, Porter DH, Catignani GL. Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy Sci. 1983;66:1219-27. https://doi.org/10.3168/jds.S0022-0302(83)81926-2   DOI
8 Kim TK, Yong HI, Chun HH, Lee MA, Kim YB, Choi YS. Changes of amino acid composition and protein technical functionality of edible insects by extracting steps. J Asia-Pac Entomol. 2020;23:298-305. https://doi.org/10.1016/j.aspen.2019.12.017   DOI
9 Adams GE, Posener ML, Bisby RH, Cundall RB, Key JR. Free radical reactions with proteins and enzymes: the inactivation of pepsin. Int J Radiat Biol Relat Stud Phys Chem Med. 1979;35:497-507. https://doi.org/10.1080/09553007914550611   DOI
10 He J, Zhou G, Bai Y, Wang C, Zhu S, Xu X, et al. The effect of meat processing methods on changes in disulfide bonding and alteration of protein structures: impact on protein digestion products. RSC Adv. 2018;8:17595-605. https://doi.org/10.1039/c8ra02310g   DOI
11 Oncel S, Uzun L, Garipcan B, Denizli A. Synthesis of phenylalanine-containing hydrophobic beads for lysozyme adsorption. Ind Eng Chem Res. 2005;44:7049-56. https://doi.org/10.1021/ie0506318   DOI
12 Banjo AD, Lawal OA, Adeyemi AI. The microbial fauna associated with the larvae of Oryctes monocerus. J Appl Sci Res. 2006;2:837-43.
13 Stoops J, Crauwels S, Waud M, Claes J, Lievens B, Van Campenhout L. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiol. 2016;53:122-7. https://doi.org/10.1016/j.fm.2015.09.010   DOI
14 Chung MY, Hwang JS, Goo TW, Yun EY. Analysis of general composition and harmful material of Protaetia brevitarsis. J Life Sci. 2013;23:664-8. https://doi.org/10.5352/JLS.2013.23.5.664   DOI
15 Kim SK, Weaver CM, Choi MK. Proximate composition and mineral content of five edible insects consumed in Korea. CyTA J Food. 2017;15:143-6. https://doi.org/10.1080/19476337.2016.1223172
16 Purschke B, Tanzmeister H, Meinlschmidt P, Baumgartner S, Lauter K, Jager H. Recovery of soluble proteins from migratory locust (Locusta migratoria) and characterisation of their compositional and techno-functional properties. Food Res Int. 2018;106:271-9. https://doi.org/10.1016/j.foodres.2017.12.067   DOI
17 Zhao X, Vazquez-Gutierrez JL, Johansson DP, Landberg R, Langton M. Yellow mealworm protein for food purposes-extraction and functional properties. PLOS ONE. 2016;11:e0147791. https://doi.org/10.1371/journal.pone.0147791   DOI
18 Crippen TL, Sheffield C. External surface disinfection of the lesser mealworm (Coleoptera: Tenebrionidae). J Med Entomol. 2006;43:916-23. https://doi.org/10.1093/jmedent/43.5.916   DOI
19 Yoo JH. Review of disinfection and sterilization-back to the basics. Infect Chemother. 2018;50:101-9. https://doi.org/10.3947/ic.2018.50.2.101   DOI
20 Ingram LO. Mechanism of lysis of Escherichia coli by ethanol and other chaotropic agents. J Bacteriol. 1981;146:331-6. https://doi.org/10.1128/jb.146.1.331-336.1981   DOI
21 Hwang JS, Kang BR, Kim SR, Yun EY, Park KH, Jeon JP, et al. Molecular characterization of a defensin-like peptide from larvae of a beetle, Protaetia brevitarsis. Int J Ind Entomol. 2008;17:131-5.
22 Undeland I, Harrod M, Lingnert H. Comparison between methods using low-toxicity solvents for the extraction of lipids from herring (Clupea harengus). Food Chem. 1998;61:355-65. https://doi.org/10.1016/s0308-8146(97)00053-8   DOI
23 Fajardo AR, Cerdan LE, Medina AR, Fernandez FGA, Moreno PAG, Grima EM. Lipid extraction from the microalga Phaeodactylum tricornutum. Eur J Lipid Sci Technol. 2007;109:120-6. https://doi.org/10.1002/ejlt.200600216   DOI
24 Verhoeckx KCM, van Broekhoven S, den Hartog-Jager CF, Gaspari M, de Jong GAH, Wichers HJ, et al. House dust mite (Der p 10) and crustacean allergic patients may react to food containing Yellow mealworm proteins. Food Chem Toxicol. 2014;65:364-73. https://doi.org/10.1016/j.fct.2013.12.049   DOI
25 Park ES, Choi MK. Recognition, purchase, and consumption of edible insects in Korean adults. J Nutr Health. 2020;53:190-202. https://doi.org/10.4163/jnh.2020.53.2.190   DOI
26 Kim TK, Yong HI, Kim YB, Kim HW, Choi YS. Edible insects as a protein source: a review of public perception, processing technology, and research trends. Food Sci Anim Resour. 2019;39:521-40. https://doi.org/10.5851/kosfa.2019.e53   DOI
27 Nongonierma AB, FitzGerald RJ. Unlocking the biological potential of proteins from edible insects through enzymatic hydrolysis: a review. Innovative Food Sci Emerging Technol. 2017;43:239-52. https://doi.org/10.1016/j.ifset.2017.08.014   DOI
28 Yoon HS, Lee CS, Lee SY, Choi CS, Lee IH, Yeo SM, et al. Purification and cDNA cloning of inducible antibacterial peptides from Protaetia brevitarsis (Coleoptera). Arch Insect Biochem Physiol. 2003;52:92-103. https://doi.org/10.1002/arch.10072   DOI
29 Dai C, Ma H, Luo L, Yin X. Angiotensin I-converting enzyme (ACE) inhibitory peptide derived from Tenebrio molitor (L.) larva protein hydrolysate. Eur Food Res Technol. 2013;236:681-9. https://doi.org/10.1007/s00217-013-1923-z   DOI
30 Bang K, Hwang S, Lee J, Cho S. Identification of immunity-related genes in the larvae of Protaetia brevitarsis seulensis (Coleoptera: Cetoniidae) by a next-generation sequencing-based transcriptome analysis. J Insect Sci. 2015;15:142. https://doi.org/10.1093/jisesa/iev120   DOI
31 Chang JH, Jo JY, Kim YJ, Lee SY, Cho HJ, You SN, et al. Biochemical characterization of a protease with fibrinolytic activity from maggots of Protaetia brevitarsis. J Life Sci. 2007;17:606-12. https://doi.org/10.5352/jls.2007.17.5.606   DOI
32 Choi BD, Wong NA, Auh JH. Defatting and sonication enhances protein extraction from edible insects. Korean J Food Sci Anim Resour. 2017;37:955-61. https://doi.org/10.5851/kosfa.2017.37.6.955   DOI
33 Bosch G, Zhang S, Oonincx DG, Hendriks WH. Protein quality of insects as potential ingredients for dog and cat foods. J Nutr Sci. 2014;3:e29. https://doi.org/10.1017/jns.2014.23   DOI
34 Bosch G, Vervoort JJM, Hendriks WH. In vitro digestibility and fermentability of selected insects for dog foods. Anim Feed Sci Technol. 2016;221:174-84. https://doi.org/10.1016/j.anifeedsci.2016.08.018   DOI
35 Tonheim SK, Nordgreen A, Hogoy I, Hamre K, Ronnestad I. In vitro digestibility of water-soluble and water-insoluble protein fractions of some common fish larval feeds and feed ingredients. Aquaculture. 2007;262:426-35. https://doi.org/10.1016/j.aquaculture.2006.10.030   DOI
36 Marono S, Piccolo G, Loponte R, Di Meo C, Attia YA, Nizza A, et al. In vitro crude protein digestibility of Tenebrio molitor and Hermetia illucens insect meals and its correlation with chemical composition traits. Ital J Anim Sci. 2015;14:3889. https://doi.org/10.4081/ijas.2015.3889   DOI
37 Manditsera FA, Luning PA, Fogliano V, Lakemond CMM. Effect of domestic cooking methods on protein digestibility and mineral bioaccessibility of wild harvested adult edible insects. Food Res Int. 2019;121:404-11. https://doi.org/10.1016/j.foodres.2019.03.052   DOI
38 Finke MD. Estimate of chitin in raw whole insects. Zoo Biol. 2007;26:105-15. https://doi.org/10.1002/zoo.20123   DOI
39 Kim JY, Kang WG, Baek IH, Kim YS, Kim HW, Min GG, et al. A survey study on the therapy bugs and edible insects. J Anim Assisted Psychother. 2017;6:59-67. https://doi.org/10.16896/kaaap.2017.6.2.59
40 Kinyuru JN, Kenji GM, Njoroge SM, Ayieko M. Effect of processing methods on the in vitro protein digestibility and vitamin content of edible winged termite (Macrotermes subhylanus) and grasshopper (Ruspolia differens). Food Bioprocess Technol. 2010;3:778-82. https://doi. org/10.1007/s11947-009-0264-1   DOI
41 Kim TK, Yong HI, Jeong CH, Han SG, Kim YB, Paik HD, et al. Technical functional properties of water-and salt-soluble proteins extracted from edible insects. Food Sci Anim Resour. 2019;39:643-54. https://doi.org/10.5851/kosfa.2019.e56   DOI
42 Megido RC, Poelaert C, Ernens M, Liotta M, Blecker C, Danthine S, et al. Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Res Int. 2018;106:503-8. https://doi.org/10.1016/j.foodres.2018.01.002   DOI
43 Liu G, Xiong YL. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. J Agric Food Chem. 2000;48:624-30. https://doi.org/10.1021/jf990520h   DOI
44 Lee S, Jo K, Lee HJ, Jo C, Yong HI, Choi YS, et al. Increased protein digestibility of beef with aging in an infant in vitro digestion model. Meat Sci. 2020;169:108210. https://doi.org/10.1016/j.meatsci.2020.108210   DOI
45 Jonas-Levi A, Martinez JJI. The high level of protein content reported in insects for food and feed is overestimated. J Food Compos Anal. 2017;62:184-8. https://doi.org/10.1016/j.jfca.2017.06.004   DOI
46 Janssen RH, Vincken JP, Arts NJ, Fogliano V, Lakemond CM. Effect of endogenous phenoloxidase on protein solubility and digestibility after processing of Tenebrio molitor, Alphitobius diaperinus and Hermetia illucens. Food Res Int. 2019;121:684-90. https://doi.org/10.1016/ j.foodres.2018.12.038   DOI
47 Chamba MVM, Hua Y, Katiyo W. Oxidation and structural modification of full-fat and defatted flour based soy protein isolates induced by natural and synthetic extraction chemicals. Food Biophys. 2014;9:193-202. https://doi.org/10.1007/s11483-014-9333-8   DOI
48 Zhang M, Zhao D, Zhu S, Nian Y, Xu X, Zhou G, et al. Overheating induced structural changes of type I collagen and impaired the protein digestibility. Food Res Int. 2020;134:109225. https://doi.org/10.1016/j.foodres.2020.109225   DOI