• Title/Summary/Keyword: Propagation Factors

Search Result 510, Processing Time 0.036 seconds

Exploration on possibility of finding gifted underachievers with high spatial ability and low verbal ability in elementary science field: Focused on "Light Propagation" (높은 공간능력과 낮은 언어능력을 가진 초등 미성취 과학영재의 발견가능성 탐색 - 빛의 직진 개념을 중심으로 -)

  • Jung, Yeon-su;Lee, Jiwon;Kim, Jung Bog
    • Journal of Gifted/Talented Education
    • /
    • v.26 no.1
    • /
    • pp.101-122
    • /
    • 2016
  • The purpose of this study is to explore a possibility finding gifted underachievers who have high spatial ability, but low verbal ability in elementary science field. In Korea, because teachers used to refer students' academic achievement only when they recommend gifted students, underachievers used to be excluded. The participants are 5th-grade students in elementary school. In this research, developed teaching materials were given to students to find underachievers. Results of spatial ability test, verbal ability test, science academic achievement, non-verbal test, and interviews about light propagation concept were obtained. By analyzing results of this study, we found that spatial ability is the most important factors to understand light propagation. And there are some features to understand light propagation according to spatial ability. Lastly, this study shows the possibility of non-verbal test to find gifted underachievers with high spatial ability and low verbal ability.

An integral quasi-3D computational model for the hygro-thermal wave propagation of imperfect FGM sandwich plates

  • Abdelouahed Tounsi;Saeed I. Tahir;Mohammed A. Al-Osta;Trinh Do-Van;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.61-74
    • /
    • 2023
  • This article investigates the wave propagation analysis of the imperfect functionally graded (FG) sandwich plates based on a novel simple four-variable integral quasi-3D higher-order shear deformation theory (HSDT). The thickness stretching effect is considered in the transverse displacement component. The presented formulation ensures a parabolic variation of the transverse shear stresses with zero-stresses at the top and the bottom surfaces without requiring any shear correction factors. The studied sandwich plates can be used in several sectors as areas of aircraft, construction, naval/marine, aerospace and wind energy systems, the sandwich structure is composed from three layers (two FG face sheets and isotropic core). The material properties in the FG faces sheet are computed according to a modified power law function with considering the porosity which may appear during the manufacturing process in the form of micro-voids in the layer body. The Hamilton principle is utilized to determine the four governing differential equations for wave propagation in FG plates which is reduced in terms of computation time and cost compared to the other conventional quasi-3D models. An eigenvalue equation is formulated for the analytical solution using a generalized displacements' solution form for wave propagation. The effects of porosity, temperature, moisture concentration, core thickness, and the material exponent on the plates' dispersion relations are examined by considering the thickness stretching influence.

Effect of foliar spraying 6-benzylaminopurine on the growth and flowering of Sedirea japonica seedling (6-benzylaminopurine의 엽면살포가 나도풍란 유묘의 생장 및 개화에 미치는 영향 분석)

  • Jiae An;Hyeong-Bin Park;Pyoung-Beom Kim;Hwan-Joon Park;Seongjun Kim;Chang-Woo Lee;Byoung-Doo Lee;Ju-Hyoung Baek;Nam-Young Kim;Jung-Eun Hwang
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.155-164
    • /
    • 2023
  • Sedirea japonica is one of the critically endangered species in South Korea mostly due to artificial harms such as illegal collection and habitat destruction. Therefore, artificial propagation through improving germination rate, increasing growth, and controlling flowering is meaningful for the conservation and reintroduction of S. japonica. It is suggested that cytokinins are one of the multi-factors that contribute to plant growth and floral responses. Especially, exogenous cytokinins have been known to induce or promote shoot growth or earlier flowering in orchids. Therefore, it was investigated how the application of 6-benzylaminopurine (BA) influenced the growth and inflorescence of S. japonica. A foliar spray containing BA at 100, 200, 300, and 400 ppm was applied from 1st July to 30th December 2021. Leaf length, leaf length growth rate, leaf width, and width and length ratio were measured as growth-related factors. Visible inflorescence rate, inflorescence length, the number of flowers per inflorescence, and the distance between the stalks were measured as flowering-related factors. Growth-related factors except for leaf growth rate were not affected by BA treatments, while leaf growth rate was significantly increased by 200 ppm of BA treatment. The visible inflorescence rate increased by 200 ppm of BA treatment, and there seems an optimal concentration and threshold of BA treatment. An iterative experiment with more seedlings and measurement factors would be helpful to figure out the effects of exogenous BA treatment on S. japonica, and it can be applied for mass propagation.

The Analytic and Numerical Solutions of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer Models to the Strong Offshore Winds.

  • Lee, Hyong-Sun
    • Journal of the korean society of oceanography
    • /
    • v.31 no.2
    • /
    • pp.75-88
    • /
    • 1996
  • The analytic and numerical solution of the 1$\frac{1}{2}$-layer and 2$\frac{1}{2}$-layer models are derived. The large coastal-sea level drop and the fast westward speed of the anticyclonic gyre due to strong offshore winds using two ocean models are investigated. The models are forced by wind stress fields similar in structure to the intense mountain-pass jets(${\sim}$20 dyne/$cm^{2}$) that appear in the Gulfs of Tehuantepec and Papagayo in the Central America for periods of 3${\sim}$7 days. Analytic and numerical solutions compare favorably with observations, the large sea-level drop (${\sim}$30 cm) at the coast and the fast westward propagation speeds (${\sim}$13 km/day) of the gyres. The coastal sea-level drop is enhanced by several factors: horizontal mixing, enhanced forcing, coastal geometry, and the existence of a second active layer in the 2$\frac{1}{2}$-layer model. Horizontal mixing enhances the sea-level drop because the coastal boundary layer is actually narrower with mixing. The forcing ${\tau}$/h is enhanced near the coast where h is thin. Especially, in analytic solutions to the 2$\frac{1}{2}$-layer model the presence of two baroclinic modes increases the sea-level drop to some degree. Of theses factors the strengthened forcing ${\tau}$/h has the largest effect on the magnitude of the drop, and when all of them are included the resulting maximum drop is -30.0 cm, close to observed values. To investigate the processes that influence the propagation speeds of anticyclonic gyre, several test wind-forced calculations were carried out. Solutions to dynamically simpler versions of the 1$\frac{1}{2}$-layer model show that the speed is increased both by ${\beta}$-induced self-advection and by larger h at the center ofthe gyres. Solutions to the 2$\frac{1}{2}$-layer model indicate that the lower-layer flow field advects the gyre westward and southward, significantly increasing their propagation speed. The Papagayo gyre propagates westward at a speed of 12.8 km/day, close to observed speeds.

  • PDF

An Analysis of Hindrance Factors of Process Capability (공정능력(工程能力)의 저해요인분석(沮害要因分析))

  • Song, Seo-Il;Hwang, Ui-Cheol
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.11 no.2
    • /
    • pp.131-140
    • /
    • 1985
  • This paper analyses the hindrance factors of process capability. The reasons of the products which are out of specification can be accounted on the hindrance factors. An $\hat{e}$nquete which consists of 4 categories such as technical knowledge, work performance, work environment, and human relations at home and office, is prepared and handed out to 1000 works to get information. And Spearman's Correlation Coefficient (${\rho}s$) is adapted as an anaysis and consideration criterion. In consequence, it is revealed the next 4 factors become the vital hindrance factors of process capability: (1) unskillful working (2) over load for operators (3) imperfect work environment (4) incoordination of human relations And the correspondent policy can be summarized as follows: (1) propagation & fixation of I.E. techniques (2) harmonization of human relations (3) improvement of work environment (4) strengthening the T.W.I.

  • PDF

Experimental Research of an ECR Heating with R-wave in a Helicon Plasma Source

  • Ku, Dong-Jin;An, C.Y.;Park, Min;Kim, S.H.;Wang, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.274-274
    • /
    • 2012
  • We have researched on controlling an electron temperature and a plasma collision frequency to study the effect of collisions on helicon plasmas. So, we have designed and constructed an electron cyclotron resonance (ECR) heating system in the helicon device as an auxiliary heating source. Since then, we have tried to optimize experimental designs such as a magnetic field configuration for ECR heating and 2.45GHz microwave launching system for its power transfer to the plasma effectively, and have characterized plasma parameters using a Langmuir probe. For improving an efficiency of the ECR heating with R-wave in the helicon plasma, we would understand an effect of R-wave propagation with ECR heating in the helicon plasma, because the efficiency of ECR heating with R-wave depends on some factors such as electron temperature, electron density, and magnetic field gradient. Firstly, we calculate the effect of R-wave propagation into the ECR zone in the plasma with those factors. We modify the magnetic field configuration and this system for the effective ECR heating in the plasma. Finally, after optimizing this system, the plasma parameters such as electron temperature and electron density are characterized by a RF compensated Langmuir probe.

  • PDF

RFID Tag Detection on a Water Content Using a Back-propagation Learning Machine

  • Jo, Min-Ho;Lim, Chang-Gyoon;Zimmers, Emory W.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.1 no.1
    • /
    • pp.19-31
    • /
    • 2007
  • RFID tag is detected by an RFID antenna and information is read from the tag detected, by an RFID reader. RFID tag detection by an RFID reader is very important at the deployment stage. Tag detection is influenced by factors such as tag direction on a target object, speed of a conveyer moving the object, and the contents of an object. The water content of the object absorbs radio waves at high frequencies, typically approximately 900 MHz, resulting in unstable tag signal power. Currently, finding the best conditions for factors influencing the tag detection requires very time consuming work at deployment. Thus, a quick and simple RFID tag detection scheme is needed to improve the current time consuming trial-and-error experimental method. This paper proposes a back-propagation learning-based RFID tag detection prediction scheme, which is intelligent and has the advantages of ease of use and time/cost savings. The results of simulation with the proposed scheme demonstrate a high prediction accuracy for tag detection on a water content, which is comparable with the current method in terms of time/cost savings.

Dynamic Stress Intensity Factors of the Half Infinite Crack in the Orthotropic Material Strip with a Large Anisotropic Ratio (이방성비가 큰 직교이방성체의 반 무한 균열에 대한 동적 응력확대계수에 관한 연구)

  • Baek, Un-Cheol;Hwang, Jae-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.6 s.177
    • /
    • pp.1557-1564
    • /
    • 2000
  • When the half infinite crack in the orthotropic material strip with a large anisotropic ratio(E11>>E22) propagates with constant velocity, dynamic stress component $\sigma$y occurre d along the $\chi$ axis is derived by using the Fourier transformation and Wiener-Hopf technique, and the dynamic stress intensity factor is derived. The dynamic stress intensity factor depends on a crack velocity, mechanical properties and specimen hight. The normalized dynamic stress intensity factors approach the maximum values when normalized time(=Cs/a) is about 2. They have the constant values when the normalized time is greater than or equal to about 2, and decrease with increasing a/h(h: specimen hight, a: crack length) and the normalized crack propagation velocity( = c/Cs, Cs: shear wave velocity, c: crack propagation velocity).

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT JANGHUNG, KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and then to apply these to the selected study area of Janghung in Korea. We aimed to verify the effect of data selection on training sites. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use was constructed. Thirteen landslide-related factors were extracted from the spatial database. Using these factors, landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Five different training datasets were applied to analyze and verify the effect of training. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. The results of the landslide susceptibility maps were verified and compared using landslide location data. GIS data were used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool to analyze landslide susceptibility.

  • PDF