• 제목/요약/키워드: Programmed cell death

검색결과 233건 처리시간 0.048초

패혈증에서 PD-L1 (Programmed Cell Death-ligand 1)의 발현 증가 기전 (Induction Mechanism of PD-L1 (Programmed Cell Death-ligand 1) in Sepsis)

  • 이상민
    • Tuberculosis and Respiratory Diseases
    • /
    • 제65권4호
    • /
    • pp.343-350
    • /
    • 2008
  • PD-L1 is expressed in a variety of antigen-presenting cells and provides T cell tolerance via ligation with its receptor PD-1 and B7-1 on T cells. Stimulation with lipopolysaccharide (LPS) can increase the level of PD-L1 expression in B cells and macrophages, which suggests that this molecule plays a role in the immunosuppression observed in severe sepsis. The aim of this study was to identify which of the downstream pathways of TLR4 are involved in the up-regulation of PD-L1 by LPS in macrophages. Flow cytometry was used to examine the expression of PD-L1 in RAW 264.7 macrophages stimulated with LPS. The following chemical inhibitors were used to evaluate the role of each pathway: LY294002 for PI3K/Akt, SB202190 for p38 MAPK, and U0126 for MEK. LPS induced the expression of PD-L1 in a time- and dose-dependent manner. Transfection of siRNA for TLR4 suppressed the induction of PD-L1. Pretreatment with LY294002 and SB202190 decreased the level of PD-L1 expression but U0126 did not. Overall, the PI3K/Akt and p38 MAPK pathways are involved in the up-regulation of PD-L1 expression in RAW 264.7 macrophages stimulated with LPS.

Characterization of Programmed Cell Death in the Silkworm Thoracic Ganglia during Postembryonic Periods

  • Kim, Soon-Ok;Kim, Mi-Young;Song, Hwa-Young;Kim, Jin-Hee;Kang, Pil-Don;Lee, Bong-Hee
    • Animal cells and systems
    • /
    • 제11권1호
    • /
    • pp.23-31
    • /
    • 2007
  • Programmed cell death was characterized in the silkworm thoracic ganglia TG1, TG2 and TG3 during postembryonic periods by TUNEL assay. Apoptotic cells were detected in the three TGs of all larval stages except for day-1, 2 1st instar larvae, in which no apoptotic cells were found. From day-7 5th larva, the numbers of apoptotic cells were dramatically increased and peaked on day-1 pupa and day-2 pupa and then abruptly decreased. Apoptotic cells finally disappeared in day-1 adult. In-vivo injection of 20-hydroxyecdysone (20E) into day-8 5th larva resulted in a striking decrease of apoptotic cells. Actinomycin D (Act D) or cycloheximide (CHX), injected into hemolymph of day-8 5th larva, resulted in a decrease of apoptotic cells in the three TGs. Injection of caspase-8 and -3 inhibitors also blocked cellular apoptosis. These results will provide valuable information for understanding of cellular changes in the three TGs during metamorphosis of the insect species.

The role of mitochondria in apoptosis

  • Jeong, Seon-Yong;Seol, Dai-Wu
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.11-22
    • /
    • 2008
  • Apoptosis (programmed cell death) is a cellular self-destruction mechanism that is essential for a variety of biological events, such as developmental sculpturing, tissue homeostasis, and the removal of unwanted cells. Mitochondria play a crucial role in regulating cell death. $Ca^{2+}$ has long been recognized as a participant in apoptotic pathways. Mitochondria are known to modulate and synchronize $Ca^{2+}$ signaling. Massive accumulation of $Ca^{2+}$ in the mitochondria leads to apoptosis. The $Ca^{2+}$ dynamics of ER and mitochondria appear to be modulated by the Bcl-2 family proteins, key factors involved in apoptosis. The number and morphology of mitochondria are precisely controlled through mitochondrial fusion and fission process by numerous mitochondria-shaping proteins. Mitochondrial fission accompanies apoptotic cell death and appears to be important for progression of the apoptotic pathway. Here, we highlight and discuss the role of mitochondrial calcium handling and mitochondrial fusion and fission machinery in apoptosis.

Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

  • Han, Xia;Piao, Mei Jing;Kim, Ki Cheon;Hewage, Susara Ruwan Kumara Madduma;Yoo, Eun Sook;Koh, Young Sang;Kang, Hee Kyoung;Shin, Jennifer H;Park, Yeunsoo;Yoo, Suk Jae;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • 제23권4호
    • /
    • pp.357-366
    • /
    • 2015
  • Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

Poly (ADP-ribose) in the pathogenesis of Parkinson's disease

  • Lee, Yunjong;Kang, Ho Chul;Lee, Byoung Dae;Lee, Yun-Il;Kim, Young Pil;Shin, Joo-Ho
    • BMB Reports
    • /
    • 제47권8호
    • /
    • pp.424-432
    • /
    • 2014
  • The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death, characterized by PARP1 activation, apoptosis inducing factor (AIF) nuclear translocation, and large scale DNA fragmentation. Besides cell death regulation via interaction with AIF, PAR molecule mediates diverse cellular processes including genomic stability, cell division, transcription, epigenetic regulation, and stress granule formation. In this review, we will discuss the roles of PARP1 activation and PAR molecules in the pathological processes of Parkinson's disease. Potential interaction between PAR molecule and Parkinson's disease protein interactome are briefly introduced. Finally, we suggest promising points of therapeutic intervention in the pathological PAR signaling cascade to halt progression in Parkinson's disease.

돼지 단위생식란의 세포사멸 유전자 발현 양상에 관한 연구 (Expression Analysis of Programmed Cell Death Genes in Porcine Parthenogenesis)

  • 손종윤;김상환;정덕원;류춘열;윤종택
    • 한국수정란이식학회지
    • /
    • 제30권3호
    • /
    • pp.239-248
    • /
    • 2015
  • The nature of molecular mechanisms governing embryonic cell block is largely unknown, but recent reports have demonstrated that proper execution of programmed cell death is crucial for this process. The main objective of this study is to determine effects of programmed cell death on porcine oocytes development in vitro after parthenogenesis. Among the blastocysts matured in 3MA, MAP1LC3A and ATG5 RNA gene expression level increased in the order of Cyst < 3MA < RP. However, Casp-3 and TNF-r RNA gene expression level decreased in the order of RP < 3MA < Cyst. Expression of mTOR within the RP-cultured blastocyst was the most highly to the inner cell mass, while 3MA-cultured blastocyst showed very lowest expression in inner cell mass. The expression of mTOR showed a pattern opposite to that of MAP1LC3A. That is, its expression was the lowest in Cyst group. When the enzymatic activity of MMP-2 and MMP-9 was assessed in culture, the level of active MMP-9 was higher expression in the medium of each RP treatment group, with the level of another treatment group being relatively higher. Analyses of TIMP-2 and TIMP-3 revealed that their expression was higher in groups that did not receive RP treatment. More specifically, the level of TIMP-2 was not affected by Cyst treatment, while the level of TIMP-3 was higher in 3MA and RP treatment group. There was highly cell division activation efficiency of parthenogenesis on cultured system of RP supplement IVC medium. Therefore, these results suggest that embryo development was significantly increased in conditional culture medium with active autophagy as compared to common cultured condition. Further investigation of this distinction may enable the development of innovative improvements for the production of porcine somatic cell nuclear transfer.

Ultrastructural Changes During Programmed Cell Death of Tobacco Leaf Tissues Infected with Tobacco mosaic virus

  • Shin, Jun-Seong;Kim, Young-Ho;Chae, Soon-Yong
    • The Plant Pathology Journal
    • /
    • 제17권6호
    • /
    • pp.315-324
    • /
    • 2001
  • Tobacco (Nicotiana tabacum cvs.Xanthi-nc and NC 82) plants infected with Tobacco mosaic virus (TMV) were examined ultrastructurally. Local lesions produced by TMV were sunken and withered. The plants were subjected to temperature shift (TS), a method to produce programmed cell death (PCD), by placing the infected plants initially at high temperature (35$^{\circ}C$) for 2 days and then shifting them to greenhouse temperature (22-27$^{\circ}C$). As a result, expanded lesions around the original necrotic lesions were produced. The expanded area initially had no symptoms, but it withered and became necrotic 15 h after TS. No ultrastructural changes related to PCD were noted at 0 h after TS in Xanthi-nc tobacco tissues as well as in healthy and susceptible tobacco tissues infected with TMV, At 6 h after TS, chloroplasts were convoluted and cytoplasm began to be depleted; however no necrotic cells were found. At 17 h after TS, ground cytoplasm of affected cells was completely depleted and chloroplasts were stacked together with bent cell wall or dispersed in the intracellular space. Necrotic cells were also observed, containing virus particles in the necrotic cytoplasm. There were initially two types of symptoms in the expanded lesions: chlorosis and non-chlorosis (green). Abundant TMV particles and X-bodies were only found in the chlorotic tissue areas. These results suggest that PCD by TMV infection may start with the wilting of cells and tissues before necrotic lesion formation.

  • PDF