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Abstract: Programmed cell death was characterized in the
silkworm thoracic ganglia TG1, TG2 and TG3 during
postembryonic periods by TUNEL assay. Apoptotic cells
were detected in the three TGs of all larval stages except for
day-1, 2 1stinstar larvae, in which no apoptotic cells were
found. From day-7 5th larva, the numbers of apoptotic cells
were dramatically increased and peaked on day-1 pupa and
day-2 pupa and then abruptly decreased. Apoptotic cells
finally disappeared in day-1 adult. /n-vivo injection of 20-
hydroxyecdysone (20E) into day-8 5th larva resulted in a
striking decrease of apoptotic cells. Actinomycin D (Act D) or
cycloheximide (CHX), injected into hemolymph of day-8 5th
larva, resulted in a decrease of apoptotic cells in the three
TGs. Injection of caspase-8 and -3 inhibitors also blocked
cellular apoptosis. These results will provide valuable
information for understanding of cellular changes in the
three TGs during metamorphosis of the insect species.
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Programmed cell death, or apoptosis, plays an important
role in eliminating excess, outmoded or damaged cells
during embryonic and postembryonic development (Jiang
et al., 1997; Aravind et al., 1999; Liu and Hengartner,
1999). The term ‘“programmed cell death” (PCD) was
established to distinguish cell death from necrotic cell
destruction (Lockshin and Zakeri, 1990). PCD usually
proceeds through a stereotypical series of distinct
morphological stages that include cell shrinkage, chromatin
condensation, DNA cleavage, ultimately cellular fragmentation
and formation of apoptotic bodies (Kerr et al., 1972;
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Wyllie, 1980). Because PCD plays such a critical role in
both normal and abnormal development, extensive studies
have focused on its regulation.

PCD is an integral component of maintenance of
homeostasis and host defense against pathogens in animals
(Jacobson et al.,, 1997; Vaux and Korsmeyer, 1999). In
insect, imaginal tissues and organs are newly formed from
primordial cells, or imaginal discs, within larva, while most
of larval tissues are degenerated during pupal stage. PCD
occurs simultaneously in various differentiating tissues
(Holman et al., 1996; Kaellen, 1965). In case of development
of both vertebrate and invertebrate nervous systems, PCD
of mature and differentiating cells has been clearly
demonstrated and extensively studied (Caldero et al., 1998;
D’Mello, 1998; Truman, 1984; Truman et al., 1992), whereas
only few studies reported PCD in cellular precursors (Carr
and Simpson, 1981; Champlin and Truman, 1998; Monsma
and Booker, 1996; Nordlander and Edwards, 1969). On the
other hand, studies on mammals and birds suggested that
death of cellular precursors might be common in the
development of the central nervous system (Blaschke et al.,
1998; Diaz et al., 1999).

Factors that influence whether particular cells die or
survive include the levels of, and developmental timing of
exposure to, hormones and neurotrophic factors (Burek and
Oppenheim, 1996). Among many extrinsic factors that
regulate PCD are steroid hormones, represented by 20-
hydroxyecdysone (20E) (Breedlove, 1992; Mills and
Sengelaub, 1993; Nordeen et al., 1985, Truman et al.,
1992). Steroid hormones influence many aspects of cellular
phenotype. During insect metamorphosis, 20E regulates
cellular survival, dendritic and axonal growth or regression
of nerve cells and other changes in neuronal development
(Hoffman and Weeks, 2001). In amphibians, metamorphic
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changes are regulated by thyroid hormones (Hoskins and
Grobstein, 1984; Tata, 1994). In avian and mammalian species,
gonadal steroid hormones generate sexually dimorphic
regions of the nervous system through sex- and region-
specific regulation of cellular birth, growth, and survival
(Garcia-Segura et al., 1994; Kawata, 1995). In most cases it
is unknown whether an effect is mediated by a direct action
on the neurons of interest or by indirect signals from other
hormonally sensitive cells or a combination of the two
effects. This information is crucial in understanding how
PCD is activated or repressed within individual cells.

This study showed pattern of cellular apoptosis in the
three silkworm TGs during postembryonic life and how
apoptotic TG cells respond to 20E, including implication of
caspases in PCD (Thomberry and Lazebnik, 1998; Susin et
al., 1998).

MATERIALS AND METHODS

Animals

Cold-treated eggs from silkworm, Bombyx mori, which
were kindly provided by Department of Agricultural
Biology in National Institute of Agricultural Science and
Technology (Suwon, Korea), were hatched to 1st larvae
about 8-10 days after incubation under 12 : 12 h light/dark
photoperiod at 29°C and relative humidity of 70%. Larvae
were then reared on artificial diet of “Silk-mate” (Nihon
Nosan Kogyo, Yokohama, Japan). After hatching, 1st
larvae were incubated at 28°C, 2nd and 3rd larvae at 27°C
and 26°C, respectively, and 4th larva to adult at 25°C. Day-
8 5th instar larvae were mainly used.

Analysis of apoptotic TG cells by TUNEL assay
Terminal deoxynucleotidyl transferase-mediated dUTP nick-
end labeling (TUNEL) method was used to visualize cells
undergoing apoptosis. Tissue preparations were performed
according to the method described by Lee et al. (1998) and
Kim et al. (1998). Thoracic ganglia were dissected from
each developmental stage in 0.1 M sodium phosphate
buffer (PB, pH 7.4). The isolated tissues were then fixed in
4% paraformaldehyde (PFA) in 0.1 M PB for 6-10 h at 4°C,
depending on size of each tissue. They were then immersed
in phosphate-buffered saline (PBS) with 1% Triton X-100
(PBST) at 4°C overnight, followed by dehydration in a
graded ethanol series, clearing in xylene, and rehydration in
the reverse order to dehydration.

TUNEL assay was performed using a DeadEed™
Fluorometric TUNEL System Kit (Promega). Three isolated
TGs of designated stages were digested with 50 pl Proteinase
K solution (20 ul/ml Proteinase K in buffer solution) for
10 min to increase their permeability. After washing with
PBS for 5min, the TGs were treated with kit-provided
equilibration buffer for 5-10 min at room temperature and

incubated in the TdT solution buffer consisting of equilibration
buffer (45 pl), nucleotide mix (5 pl), and tTdT (1 pl) in a
humidified chamber for 1 h at 37°C. The tissues were then
incubated for 15 min in stop solution (2 x SSC), washed
three times in PBS for 15 min, and treated with propidium
iodide (PI, 0.5-1.0 ul/ml in PBS). Tissues were then rinsed
three times in PBS for 30 min, transferred onto slide
glasses, exposed to one drop of anti-fade solution to prevent
from exposure to light, and mounted on slides with
coverslip (Boatright et al., 2003; Bossy-Wetzel and Green,
2000). Apoptotic cells were observed under confocal laser
scanning microscope (Zeiss LSM 310) with fluorescence
optics, using identical pinhole, brightness and contrast setting.

Injections of 20E and chemicals

Larvae were injected with 20E and other chemicals as
described by Mitchell (1978). 20E (Sigma) was dissolved
in ethanol and stored at —20°C until use. Day-8 5th instar
larvae (average weight 1.3g) were injected with 20E, while
the same volume of PB was injected into controls.
Cycloheximide (CHX; Sigma) and actinomycin D (ActD;
Sigma) were dissolved in ethanol at 10 mg/ml and 0.1 mg/
ml, respectively, and stored at —20°C until use. Caspase-8
and -3 inhibitors (Calbiochem) were kept as stock solutions
of 100 mM in dimethyl sulfoxide (DMSO) solution. Through
abdominal cavity, 1 ul of suitably diluted compounds were
injected into day-8 5th larva with Hamilton syringe.

Western blot

Protein samples were prepared from day-8 5th instar larvae
that were injected with PB (control), 20E, ActD, CHX, and
caspase-8 and -3 inhibitors. Dissected TGs were homogenized
in 2x sample buffer (125 mM Tris, 4% SDS, 20% glycerol,
0.005% bromophenol blue, 10% B-2-mercaptoethanol),
boiled for 3 min, and centrifuged at 10,000 g at 4°C. The
supernatant was boiled again for 3 min, and equilibrated to
room temperature before loading. Equal amounts of total
protein were loaded per lane and separated on 12% gels.
Western blot transfer of the separated proteins was performed
at 4°C, using nitrocellulose membranes at 100 V for 1.5 h.
The blots were blocked for 1h in TBST containing 5%
nonfat dried milk. The membranes were probed with
monoclonal anti-cleaved caspase3 antibody (Cell signaling)
diluted 1 : 1000 in TBST containing 5% nonfat dried milk
at 4 overnight. They were then washed for 1 h with frequent
changes of TBST, followed by incubation in a peroxidase-
coupled secondary antibody (1 :2500) for 1 h in TBST
containing 5% nonfat dried milk. The blots were then
rinsed as before and developed using an enhanced chemi-
luminescence detection system (ECL, Amersham Corp,
UK). Membranes were stripped and reprobed with f-actin
(1 : 1000) to confirm equal loading of the sample.
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Fig. 1. Patterns of cellular apoptosis in TG1, TG2 and TG3 of silkworm during postembryonic stages. (A) Confocal micrographs showing
apoptotic cells in TG1, TG2 and TG3 of day-1 1st instar larvae to day-1 adults. No cellular apoptosis was found in the three TGs of day-1 1st
instar larva and day-1 adult. Apoptotic cells began to gradually increase after the day-7 5th instar larva. Apoptotic cell number in the three TGs
in reached maximum pupa. Subsequently, apoptotic cells sharply decreased at day-2 pupa. Nuclei with fragmented DNA were detected. Intact
nuclei were counter-stained with Pl. Scale bar represents 100 um. (B) Histogram showing apoptotic cell number in the three TGs during
postembryonic periods. In most larval stages, apoptotic frequency moves within narrow limits. In day-7 to -9 5th instar larval stages, however,
apoptotic cells were rapidly increased until day-1 or -2 pupal stages. Thereafter, apoptotic cells were decreased drastically. Developmental days
of larva, pupa and adult are indicated as Arabic humbers along the horizontal axis.

RESULTS treated with FITC in TUNEL assay, but appeared red when

stained by PI. When PI and FITC staining images were
Apoptotic cells in three TGs during postembryonic superimposed, the apoptotic nuclei appeared yellow (Fig.
periods 1A). TG1, TG2 and TG3 showed a similar pattern of
In postembryonic stages, all apoptotic cells harbored nuclei cellular apoptosis except for the day of the largest apoptotic
that appeared green under the confocal microscope when cell number.

INTEGRATIVE BIOSCIENCES Vol. 11 No. 1 25



Soon Ok Kim, Mi Young Kim, Hwa Young Song, Jin Hee Kim, Pil Don Kang and Bong Hee Lee

In the three TGs of day-1 1st instar larva, there were no
apoptotic cells, which began to appear in the TGs of the
day-3 1st instar larva (Fig. 1B). In the mid-day of each
instar period, TGs showed a small rise in apoptotic cells.
However, apoptotic cells of TGs began to gradually
increase in day-7 5th instar larva and dramatically rised and
culminated in day-1 and -2 pupae; the highest number
apoptotic cells appeared in dya-1 pupa. Day-2 pupa was
ruled out because the 2nd thoracic ganglion (TG2) cells and
3rd thoracic ganglion (TG3) were fused into a larger
ganglion, forming a thoracic neuron center. Cellular
apoptosis of the three TGs decreased sharply 2 days after
pupation, stayed at a low level for a few days and
disappeared in day-1 adult.

In order to monitor the pattern of apoptotic cells in all
postembryonic stages, at least 7 and at most 23 TGs were
isolated from larvae, pupae or adult of each postembryonic
day (Table 1). The average number of apoptotic cells in
each postembryonic stage was determined by dividing the
total number of apoptotic cells counted in all TGs by the
number of TGs investigated at each stage.

Cellular apoptosis in TGs exposed to 20E

20E inhibited cellular apoptosis in the three TGs of day-8
5Sth instar larva (Fig. 2A). 20E at various concentrations led
to similar results. Apoptotic cells induced by lower
concentrations of 20E (0.1-1.0 pg/ml) showed no remarkable
contrast in its number compared to those by higher
concentrations (5.010 pg/ml). As shown in Fig. 2B, all
concentrations of 20E inhibited cellular apoptosis in the
three TGs (Fig. 2B). The inhibition was stronger in the TG2
and TG3 than in TG1.

Inhibition of apoptosis by ActD and CHX

In many cases, apoptosis required synthesis of new proteins
that were believed to activate preexisting cell death
machinery.

In order to investigate whether synthesis of new proteins
was a prerequisite for cellular apoptosis, 100 ng/ml ActD or
5 pg CHX was injected into day-8 5Sth larva larva. The
presence of apoptotic cells was then monitored in the three
TGs by confocal microscopy 48 h after the injection, and
cleaved caspase-3 was detected by western blotting 24 h
later (Fig. 3A).

As shown in Fig. 3B, the number of apoptotic cells in
three TGs injected with ActD were significantly lower
(about 8 (TG1), 5 (TG2) and 4 (TG3) and about 86%
(TG1), 90% (TG2) and 92% (TG3) decreases) than those of
the control (about 56 (TG1), 49 (TG2) and 48 (TG3)).
When the three TGs were injected with CHX, the number
of apoptotic cells was also decreased significantly (about 6
(TG1), 4 (TG2) and 3 (TG3) and about 89% (TG1), 92%
(TG2) and 94% (TG3) decreases), as compared to those

Table 1. Apoptotic cells of three TGs in various postembryonic
developmental stages investigated for pattern of TG cell apoptosis in
the silkworm, Bombyx mori

Total Average  Average  Average
Developmental investigated apopt.otlc apopt.otlc apopt_oﬂc
stages TGs cellsina cellsina cellsina
TG1 TG2 TG3
1st larva Day-1 16 0 0 0
Day-1 19 0] 0 0
Day-3 19 0 0 1
Day-4 19 0 0 0
2nd larva Day-1 16 1 1 0
Day-2 19 1 1 1
Day-3 16 0 0 0
3rd larva Day-1 16 0 0 0
Day-2 19 1 1 1
Day-3 22 3 3 4
Day-4 16 1 0 0
4th larva Day-1 16 2 2 3
Day-2 23 9 7 7
Day-3 16 0 0 0
Day-4 16 0 0 0
5th larva Day-1 16 1 1 2
Day-2 16 1 1 1
Day-3 19 1 1 1
Day4 . 22 4 3 3
Day-5 22 1 1 1
Day 6 19 1 0 0
Day-7 18 7 4 4
Day-8 15 13 8 8
Day 9 18 17 10 8
Pupa Day-1 15 56 49 48
Day-2 15 31 58
Day-3 12 9 13
Day-4 12 4 6
Day-5 10 4 5
Day-6 1" 2 3
Day-7 10 3 4
Day-8 7 2 2
Day-9 7 0 0]
Adult Day-1 7 0 0

*Average apoptotic cell number in a TG, obtained by dividing total number
of apoptotic cells in all TGs by total number of TGs investigated.

from the control (about 56 (TG1), 49 (TG2) and 48 (TG3)).
Results from western blotting, indicated no cleaved
caspase-3 within the TGs of the specimens (Fig. 3C). These
results implied that specific RNA or protein synthesis
might constitute the cause of death in these TG cells.
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Fig. 2. Dose effects of 20E on cellular apoptosis in TG1, TG2 and TG3. (A) Confocal micrographs of the three TGs of day-8 5th instar larva after
injection with various concentrations of 20E (0.1, 1, 5, 10 mg/mi}. In all 20E concentrations, cellular apoptosis in the three TGs was shown to be
effectively inhibited. Apoptotic cells were rarely found in larva after injection of 10 mg/ml 20E. Scale bar represents 100 ym. (B) Histogram
presenting the number of apoptotic cells in the three TGs. Diamonds, squares and triangles represent numbers of apoptotic celis in TG1, TG2

and TG3, respectively.

Effect of caspase inhibitors on PCD of TG cells
In order to clarify whether caspase-8 and caspase-3 were
involved in signal pathway of cellular apoptosis in the B.
mori TGs, caspase inhibitors were injected into hemolymph
of day-8 5th instar larva. In both cases cell death was
efficiently blocked (Fig. 4A). As shown in Fig. 4B, the
number of apoptotic cells was significantly decreased to
about 89% (TG1), 92% (TG2) and 85% (TG3) and about
93% (TG1), 88% (TG2) and 94% (TG3), respectively.
Results of western blotting, performed 24 h after the
injection of caspase-8 or -3 inhibitors, indicated no cleaved
caspase-3 within the three TGs of the specimens (Fig. 4C).
These showed that caspase -8 and -3 inhibitors effectively
blocked cellular apoptosis in the three TGs.

DISCUSSION

Inhibition of apoptosis by 20E in TGs during
metamorphosis

During metamorphic reorganization of insect CNS,
fluctuations in the 20E titer in hemolymph evoke PCD,
proliferation, maturation, and remodeling of larval neurons
into adult forms (Schubiger et al., 1998). In B. mori, 20E
was found to be responsible for three titer peaks in the
hemolymph, from 4th instar larval stage until day-1 of the
adult stage: the first, smallest 20E peak appeared between
day-2 and day-3 4th instar larval periods, and the second,
medium-sized peak between day-6 and day-8 S5th instar
larval stage, and the largest peak between day-2 and day-3
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Fig. 3. Effects of Act D and CHX on cellular apoptosis in TG1, TG2 and TG3 of day-8 5th instar larva. (A) Confocal images of three TGs
obtained 48 hours after injection of 100 ng/ml ActD or 5 mg/ml CHX). TGs injected with either Act D or CHX exhibited very few apoptotic cells,
whereas those of control larva exhibited a sizeable number of apoptotic cells. Scale bar indicates 100 im. (B) The numbers of apoptotic cells in
the three TGs injected with Act D or CHX were about 8 (TG1), 5 (TG2) and 4 (TG3), and about 6 (TG1), 4 (TG2) and 3 (TG3). (C) Results of
western blot in day-8 5th instar larval TGs, 24 hours after injection of Act D or CHX suggested that activation of cleaved caspase-3 was

completely inhibited by both treatments.

pupal stages (Mizoguchi et al., 2001). In this study, the
Bombyx TGs exhibited only one large peak in apoptotic cell
number in the day-1 or day-2 pupae (see Fig. 1). Other
peaks were detected at very low levels.

Data obtained from this study had no corresponding
relation with changes in the titer of 20E in the hemolymph.
Exposure to 20E resulted in inhibition of cellular apoptosis
in the three TGs. Many previous studies suggested that 20E
induces cellular apoptosis by increasing its titer within the
hemolymph in various tissues of insect species (Dorstyn et
al., 1999; Draizen et al., 1999; Fujiwara and Ogai, 2001;
Kinch et al., 2003; Lee et al., 2002; Robinow et al., 1997;
Terashima et al., 2000). Therefore, the results from this
study were in contrast to the previous studies. This remains
to be solved, because the relationship between the increase
in 20E titer and inhibition of cellular apoptosis could not be
explained by the results of this study.

RNA and protein synthesis during PCD in TGs
Previous studies showed that PCD is related with 20E level
(Streichert et al., 1997; Weeks et al., 1992). 20E, which is
located in hemolymph, transfers to cytosol where if
combines with a specific receptor, forming a complex of 20E
and receptor (EcRs). This complex translocates to nuclei to
bind to a specific site on DNA, triggering transcription of
specific genes (Hoffman and Weeks, 2001). These series of
events occur during apoptosis in various insect species. In
this study, however, cellular apoptosis in the three TGs was
shown to be inhibited by increased 20E. Therefore, the way
how increase of 20E titer inhibited cellular apoptosis in the
three TGs remains to be further studied in future.

Effects of caspases in apoptosis of TG cells
Caspases (a family of cysteine proteases) are important
components of the death machinery in many vertebrates
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Fig. 4. Effects of caspase-8 and -3 inhibitors on cellular apoptosis in TG1, TG2 and TG3 of day-8 5th instar larva. (A) Confocal images obtained
48 hours after injection of 50 iM caspase-8 inhibitor or 25 IM caspase-3 inhibitor. After injection of the inhibitors, apoptotic cells were significantly
decreased compared to those of control larva. Scale bar represents 100 mm. (B) The numbers of apoptotic cells in the three TGs injected with
caspase-8 and -3 inhibitors were about 6 (TG1), 4 (TG2) and 7 (TG3), and about 4 (TG1), 6 (TG2) and 3 (TG3). (C) Western blot of the three
TGs after injection of the inhibitors suggested that activation of cleaved caspase-3 was completely inhibited not only by the casapase-3 inhibitor

but also by the caspase-8 inhibitor.

and invertebrates (Thornberry and Lazebnik, 1998). Caspases
have a unique requirement for an aspartate residue at the
site of proteolytic cleavage; specific pharmacological
inhibitors of caspases contain either a single aspartate or an
aspartate within a short peptide sequence (Livingston,
1997). Caspase inhibitors could block apoptosis in both
insect and mammalian cells (Clem and Miller, 1994;
Kondo et al., 1997; Milligan et al., 1995, White et al.,
1996).
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