• Title/Summary/Keyword: Profile model

Search Result 2,133, Processing Time 0.028 seconds

A study on the customer behavior based customer profile model for personalized products recommendation (개인화된 제품 추천을 위한 고객 행동 기반 고객 프로파일 모델 연구)

  • Park, Yu-Jin;Jang, Geun-Nyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.324-331
    • /
    • 2005
  • In this paper, we propose a new customer profile model based on customer behavior in Internet shopping mall. The proposed technique defines customer profile model based on customer behavior information such as click data, buy data, and interest categories. We also implement CBCPM(Customer Behavior-based Customer Profile Model) and perform extensive experiments. The experimental results show that CBCPM has higher precision, recall, and F1 than the existing customer profile model.

  • PDF

Mathematical expression for the Prediction of Strip Profile in hot rolling mill (열연 판형상 예측 수식모델 개발)

  • Cho Y.S.;Hwang S.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.70-73
    • /
    • 2004
  • The approach in this thesis is for prediction of deformed strip profile in hot rolling mill. This approach shows how to make an expression as a mathematical form in predicting strip profile. This approach is based on the velocity field, shear stress and material flow on the strip edge along width direction and lateral displacement and stress along width are analytically calculated. Roll force is calculated in each section and then combined together to show roll force distribution along width. All the assumptions to make equation form for this approach are supported by FEM simulation result and the result of model is verified by FEM result. So, this model will supply very useful tool to the researcher and engineers which takes less time and has similar accuracy in predicting roll force profile comparing to FEM simulation. This model has to be combined with deformed roll profile model, which include thermal crown prediction and wear prediction model to predict deformed strip profile.

  • PDF

Calcuation of Stress Free Surface Profile of Stock in Red Rolling(I) (선재 압연의 소재 자유표면 형상 계산(I))

  • 이영석;최상우;유선준;주웅용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.78-87
    • /
    • 1999
  • A mathematical model for the stress free surface profile in Over-Round and Round-Oval grove rolling, which can be used effectively in the calculation of pass area, is presented. The new model has generality, simplicity and accuracy for practical usage. The stress free surface profile of an outgoing stock can be modeled when the maximum spread of it known a priori. The equation for the stress free surface profile is formulated from the linear interpolation of the radius of curvature of an incoming stock and that of roll groove to the axis direction. In developing the analytical model, the effect of rolling temperature and friction between roll and work piece(stock) were not considered since the geometry of roll groove and the incoming work piece were assumed a dominant factor which decides the stress free surface profile of the outgoing stock. A simulation with the analytical model developed also has been carried out to demonstrate the stress free surface profile of the outgoing stock.

  • PDF

A Study on the Development of the Vehicle Powertrain Model (차량의 동력전달장치 모델 개발에 관한 연구)

  • Kim, Kwangsuk
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2011
  • To estimate fuel consumption of a vehicle, a car can be tested on chassis dynamometer. In this case, test causes a lot of time and money. To predict the fuel efficiency of vehicles in the design stage or early stage of development, the development of computer simulation model is necessary. Using simulation to predict the fuel consumption, the driving model which consists of time-velocity profile and time-grade profile is necessary In this study, vehicle model is developed in MatLab/simulink to estimate real driving fuel consumption rate with time-velocity profile, time-shift gear profile and time-grade profile. Vehicle model consists of driver model, engine model, power train model, and so on. On-road vehicle tests to verify the vehicle model are carried out for analyzing the result of simulation and comparing with those of the experiments.

Prediction of Roll Force Profile in Cold Rolling - Part I : Development of a Mathematical Model (냉간 압연에서 압하력 분포 예측 - Part I : 수식 모델 개발)

  • Nam, S.Y.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.190-196
    • /
    • 2019
  • The capability of accurately predicting the roll force profile across a strip in the bite zone in cold rolling process is vital for the calculation of strip profile. This paper presents a derivation of a precision mathematical model for predicting variations in the roll force across a strip in cold rolling. While the derivation is based on an approximate 3-D theory of rolling, this mathematical model also considers plastic deformation in the pre-deformation region which is located close to the roll entrance before the strip enters the bite zone. Finally, the mathematical model is expressed as a boundary value problem, and it predicts the roll force profile and tension profile in addition to lateral plastic strain profile.

A Study on the Relation of Doping Profile and Threshold voltage in the Ion-Implanted E-IGFET(I) (Ion-Implanted E-IGFET의 Doping Profile과 Threshold 전압과의 관계에 관한 연구(I))

  • Son, Sang-Hui;O, Eung-Gi;Gwak, Gye-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.58-64
    • /
    • 1984
  • A simple model for the impurity profile in an ion-implanted channel layer of an enhancement type IGFET is assumed and a simple expression for the threshold voltage derived by using the assumed impurity profile is analyzed in detail. Also, this simple model is applied to simulating the substrate bias dependence of its threshold voltage. Excellent agreement is obtained between theory and experiment on n-channel devices. The error range of threshold voltage between gaussian-profile and box-profile is calculated in this paper and a new method of calculating the depth of ion-implanted Baler D is also introduced.

  • PDF

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.229-232
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them..

  • PDF

Improvement of Roll Profile Prediction Model in Hot Strip Rolling (열간압연 공정에서 롤 프로파일 예측모델 향상)

  • Chung, J.S.;You, J.;Park, H.D.
    • Transactions of Materials Processing
    • /
    • v.16 no.4 s.94
    • /
    • pp.250-253
    • /
    • 2007
  • In hot strip rolling, the work roll profile is one of the main factors in predicting and correcting the strip profile. Various studies concerning the wear profile and the thermal crown of work roll have been performed, and the results of these studies have shown that the work roll profile must be predicted accurately so as to efficiently control the strip qualities such as thickness, crown, flatness, and camber. Therefore, a precise prediction model of roll profile is called for in a perfect shape control system. In this paper, a genetic algorithm was applied to improve on the roll profile prediction model in hot strip rolling. In this approach, the optimal design problem is formulated on the basis of a numerical model so as to cover the diverse design variables and objective functions. A genetic algorithm was adopted for conducting design iteration for optimization to determine the coefficient of the numerical model for minimization of errors in the result of the calculated value and the measured data. A comparative analysis showed a satisfactory conformity between them.

A Study on Dynamic Simulation and Cam Profile Optimization for OHV Type Valve Trains (OHV형 밸브트레인의 동특성 해석 및 최적 캠 형상설계에 관한 연구)

  • 김도중;윤수환;박병구;신범식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.110-122
    • /
    • 1996
  • The objective of this study is to understand the dynamic characterictics of OHV type valve trains and to design and optimal cam profile which will improve engine performance. A numerical model for valve train dynamics is presented, which aims at both accuracy and computational efficiency. The lumped mass model and distributed parameter model were used to describe the valve train dynamics. Nonlinear characterictics in the valve spring behavior were included in the model. Comprehensive experiments were carried out concerning the valve train dynamics, and the model was tuned based on the test results. The dynamic model was used in designing an optimal cam profile. Because the objective function has many local minima, a conventional local optimizer cannot be used to find an optimal solution. A modified adaptive random search method is successfully employed to solve the problem. Cam lobe area could be increased up to 7.3% without any penalties in kinematic and dynamic behaviors of the valve train.

  • PDF

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.