DOI QR코드

DOI QR Code

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V. (National Engineering College, Department of Electronics and Instrumentation Engineering) ;
  • Abudhair, A. (Vel Tech Multitech Dr. Rangarajan Dr. Sakunthala Engineering College, Department of Electrical and Electronics Engineering)
  • Received : 2016.03.31
  • Accepted : 2016.06.23
  • Published : 2016.09.30

Abstract

Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

Keywords

References

  1. S. M. Dutta, F. H. Ghorbel, and R. K. Stanley, IEEE Trans. Magn. 45, 1966 (2009). https://doi.org/10.1109/TMAG.2008.2011896
  2. C. Mandache and L. Clapham, Phys. D: Appl. Phys. 36, 2427 (2003). https://doi.org/10.1088/0022-3727/36/20/001
  3. G. Kopp and H. Willems, NDT & E International 55, 75 (2013). https://doi.org/10.1016/j.ndteint.2013.01.011
  4. S. M. Dutta, F. H. Ghorbel, and R. K. Stanley, IEEE Trans. Magn. 45, 1959 (2009). https://doi.org/10.1109/TMAG.2008.2011895
  5. G. S. Park, P. W. Jung, and Y. W. Rho, J. Magn. 6, 31 (2001).
  6. D. Minkov, J. Lee, and T. Shoji, J. Magn. Magn. Mater. 217, 207 (2000). https://doi.org/10.1016/S0304-8853(00)00333-4
  7. S. Lukyanets, A. Snarskii, M. Shamonin, and V. Bakaev, NDT&E International 36, 51 (2003). https://doi.org/10.1016/S0963-8695(02)00071-3
  8. X. Dai, Q. Liang, C. Ren, J. Cao, J. Mo, and S. Wang, J. Magn. 20, 273 (2015). https://doi.org/10.4283/JMAG.2015.20.3.273
  9. J. Wu, Y. Sun, Y. Kang, and Y. Yang, IEEE Trans. Magn. 51, 6200207 (2015).
  10. V. Suresh and A. Abudhahir, Measurement Sci. Rev. 16, 8 (2016). https://doi.org/10.1515/msr-2016-0002
  11. R. K. Amineh, N. K. Nikolova, J. P. Reilly, and J. R. Hare, IEEE Trans. Magn. 44, 516 (2008). https://doi.org/10.1109/TMAG.2008.915592
  12. P. Karuppasamy, A. Abudhahir, M. Prabhakaran, S. Thirunavukkarasu, B. P. C. Rao, and T. Jayakumar, J. Nondestructive Evalu. 35, 5 (2015).
  13. D.-G. Park, M. B. Kishore, J. Y. Kim, L. J. Jacobs, and D. H. Lee, J. Magn. 21, 57 (2016). https://doi.org/10.4283/JMAG.2016.21.1.057
  14. CYSH 12 AF (InSb) Hall effect element, www.cy-sensors.com, Chen Yang Technologies GmbH & Co. KG.