• Title/Summary/Keyword: Production-process Management

Search Result 1,553, Processing Time 0.036 seconds

Determining the most profitable process mean for a production process where rejected item is sold at a reduced price or reworked (불합격 제품을 재가공하거나 할인판매하는 생산공정에 대한 공정평균의 경제적 결정)

  • 이민구;최인수;하태용
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.46-59
    • /
    • 1998
  • The problem of selecting optimal target values for the mean of the quality characteristic of interest for a production process in which an item is sold in one of two market with different profit / cost structures or reworked. Two profit models are constructed which involve four profit / cost components: profit, production, inspection, and rework costs. Assumed that the quality characteristic of interest is normally distributed, methods of finding the most profitable process mean are presented and a numerical example is given.

  • PDF

A Study on Determine CONWIP(Constant Work In Process) System Model in the Dynamic Environment (동적환경하에서의 CONWIP(Constant Work In Process) 시스템 모델설정에 관한 연구)

  • 송관배;박재현;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.5 no.4
    • /
    • pp.209-217
    • /
    • 2003
  • The traditional Kanban needs a lot of preconditions for fitting conditions of dynamic production processing environment. The traditional Kanban isn't suitable conditions of dynamic production processing environment. Therefore conditions of dynamic production processing environment is needed more stable system. This study is describe CONWIP system such as suitable in dynamic production processing environment. Most Pull system is a Kanban system than use Kanban cards or signal for production management and inventory control. The object of Kanban system is reducing inventory between shop-floor that can reduce inventiry cost. If the system reduce the number of Kanban cards would be reduce the working process WIP, can be reduced and can be found all potential problem of production between shop-floors. This study apply to CONWIP system model for Korean industrial companies.

Enterprise-wide Production Data Model for Decision Support System and Production Automation (생산 자동화 및 의사결정지원시스템 지원을 위한 전사적 생산데이터 프레임웍 개발)

  • Jang J.D.;Hong S.S.;Kim C.Y.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.615-616
    • /
    • 2006
  • Many manufacturing companies manage their production-related data for quality management and production management. Nevertheless, production related-data should be closely related to each other Stored data is mainly used to monitor their process and products' error. In this paper, we provide an enterprise-wide production data model for decision support system and product automation. Process data, quality-related data, and test data are integrated to identify the process inter or intra dependency, the yield forecasting, and the trend of process status. In addition, it helps the manufacturing decision support system to decide critical manufacturing problems.

  • PDF

A Practical Study on the Line Balancing (공정균형기법에 의한 실증적 연구)

  • 강경식;김대식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.8 no.11
    • /
    • pp.17-25
    • /
    • 1985
  • In these days the industrial management are characterized by mass production. Mass production which is not possible without the rationalization in the process of production and the efficient scale of management needs development of technical administration. The object of this study is set up on the rationalization in the process of production. And this rationalization is a means to the aim of industrial management. So as to realize the rationalization in the process of production, we should think on plan of production and the line of balancing in processes of work. The line of balancing is considered as one of very valuable administration methods. The line of balancing that controls capacities and loads so that processes of work might balance in each other makes away with happenings of idleness and stagnation during the process of work As a natural consequence it follows (1) shortening in the period of Production, (2) more efficient, (3) removing the lots of tine and matter, (4) more efficient using in elements for production. Therefore, through the labour productivity and the efficiency of the process of production increased by these effects, the line of balancing was intended to curtail the basic cost. Though the previously said line of balancing could be applied to production, it should not be said that we can completely balance in each lines of work. In other words it is impossible that the line of balancing is completely executed in every lines of work. For that reason, we should arrange the level of balancing in lines. Nowaday, in our country, it is true that the line of balancing is hardly executed at manufacturing industries. Therefore if we execute and apply the line of balancing to manufacturing industries and the larger field as well , we could curtail the basic cost, through which we could reinforce not only the international competative power but increase the labour productivity. As a result, by these effects, we would rationalize the industrial management.

  • PDF

Determining an Optimal Production Time for EPQ Model with Preventive Maintenance and Defective Rate (생산설비의 유지보수서비스와 제품의 불량률을 고려한 최적 생산주기 연구)

  • Kim, Migyoung;Park, Minjae
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.87-96
    • /
    • 2019
  • Purpose: The purpose of this paper is to determine an optimal production time for economic production quantity model with preventive maintenance and random defective rate as the function of a machinery deteriorates. Methods: If a machinery shifts from "in-control" state to "out-of-control" state, a proportion of defective items being produced increases. It is assumed that time to state shift is a random variable and follows an arbitrary distribution. The elapsed time until process shift decreases stochastically as a production cycle repeats and quasi-renewal process is used to implement for production facilities to deteriorate. Results: When the exponential parameter for exponential distribution increases, the optimal production time increases. When Weibull distribution is considered, the optimal production time is closely affected by the shape parameter of Weibull distribution. Conclusion: A mathematical model is suggested to find optimal production time and optimal number of production cycles and numerical examples are implemented to validate the patterns for changes of optimal times under different parameters assumptions. The real application is implemented using the proposed approach.

기계고장을 고려한 생산및 품질검증 정책

  • 이창환
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.298-301
    • /
    • 1996
  • This paper addresses the effects of an imperfect production process on the optimal production quantity and quality inspection policies. The system is assumed to deteriorate during the production process. The results are either defective products or machine breakdown whether multiple quality inspection is worth or not. Furthermore, when multiple inspection policy is adopted, the optimal inspection schedule is shown to be equally spaced throughout the production cycle. Exact solution and approximation of the optimal production quantity and approximation of the optimal number of inspection are provided. Finally, to better understand the model of this paper, comparisons between this model and classical EMQ model are provided.

  • PDF

A Study for the Continuous Improvement of the Manufacturing Process on Small-Medium Company through QSS(Quick Six Sigma) (QSS(Quick Six Sigma)를 통한 중소기업 생산공정의 지속적 개선에 관한 연구)

  • Yoon, IlJi
    • Journal of the Korea Safety Management & Science
    • /
    • v.24 no.3
    • /
    • pp.93-103
    • /
    • 2022
  • This study investigated the method of continuous improvement of small-medium company production processes through POSCO's QSS(Quick Six Sigma) activities. QSS is a field operation technique that encompasses the advantages of Six Sigma, TPS(Toyota Production System), TQM (Total Quality Management), and IE(Industrial Engineering). Through this, POSCO not only encourages activities centered on related small and medium-sized partners, etc., but is also expected to contribute to the continuous improvement of the company's own production process through QSS activities. In this study, rather than unconditionally carrying out activities according to the needs of large companies, the research is to help the continuous improvement of the actual production process of small and medium-sized enterprises by effectively applying and spreading QSS activities in consideration of the characteristics and environment of the company. For this purpose, empirical research is conducted on the process improvement activities and QSS activities of company Y, which has less than 100 assembly and production quality and inspection processes among SMEs. The changes in the production process improvement of SMEs through the application of the final QSS were investigated through empirical studies.

A Study on the Method to Improvement and Analysis of Production Process utilize the National Competency Standards (국가직무능력표준을 활용한 공정분석 및 개선방법에 관한 연구)

  • Kim, Sea Whan;Ryu, Jae Seop;Jeong, Young Deuk;Park, Jae Hyun;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.3
    • /
    • pp.335-342
    • /
    • 2014
  • NCS(National Competency Standards) is made by HRDKorea for real company, education, training and qualifications under the current government of national issues. It developed 836 units on the classification of KECO. But. Actual companies do not take advantage of improvements in job competency and production processes. This study is redesigned a real company production process use to some developed the NCS standards. After we finds some process problems and then searches the improve methods on analysis the problems.

Greenhouse Gas Emission Inventory Calculation of Korean Glass Industry through the Bottom-up Production Process Analysis (상향식 공정분석을 통한 국내 유리산업의 온실가스 인벤토리 산정)

  • Paik, Chunhyun;Chung, Yongjoo;Yoo, Jonghoon
    • Korean Management Science Review
    • /
    • v.32 no.1
    • /
    • pp.101-111
    • /
    • 2015
  • The glass production is classified into an energy intensive industry. This study develops a systematic procedure to derive Greenhouse Gas (GHG) emission inventory for the Korean glass industry. Based on the bottom-up approach in which the energy intensity in each production process is characterized, the EBs (energy balances) of glass production processes are derived. And the GHG emission is calculated for each of four types of glasses-flat glass, container glass, fiber glass, and LCD glass.