• Title/Summary/Keyword: Production Materials

Search Result 4,866, Processing Time 0.031 seconds

Down-regulation of inducible nitric oxide synthase and tumor necrosis factor-a expression by Bisphenol A via nuclear factor-kB inactivation in macrophages

  • Kim, Ji-Young;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.293.2-293.2
    • /
    • 2002
  • Bisphenol A [BPA. 2.2-bis(4-hydroxyphenyl)propane] is reported to have estrogenic activity: however. its influence on cytokine production or immune system function remains unclear. In this study. we investigated the effects of BPA on the production of nitric oxide (NO) and tumor necrosis factor-a (TNF-a), and on the level of inducible nitric oxide synthase (iNOS) and TNF-a gene expression in mouse macrophages. BPA alone did not affect NO or TNF-a production. (omitted)

  • PDF

$\small{D}$-Lactic Acid Production by Sporolactobacillus inulinus Y2-8 Immobilized in Fibrous Bed Bioreactor Using Corn Flour Hydrolyzate

  • Zhao, Ting;Liu, Dong;Ren, Hengfei;Shi, Xinchi;Zhao, Nan;Chen, Yong;Ying, Hanjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1664-1672
    • /
    • 2014
  • In this study, a fibrous bed bioreactor (FBB) was used for $\small{D}$-lactic acid ($\small{D}$-LA) production by Sporolactobacillus inulinus Y2-8. Corn flour hydrolyzed with ${\alpha}$-amylase and saccharifying enzyme was used as a cost-efficient and nutrient-rich substrate for $\small{D}$-LA production. A maximal starch conversion rate of 93.78% was obtained. The optimum pH for $\small{D}$-LA production was determined to be 6.5. Ammonia water was determined to be an ideal neutralizing agent, which improved the $\small{D}$-LA production and purification processes. Batch fermentation and fed-batch fermentation, with both free cells and immobilized cells, were compared to highlight the advantages of FBB fermentation. In batch mode, the $\small{D}$-LA production rate of FBB fermentation was 1.62 g/l/h, which was 37.29% higher than that of free-cell fermentation, and the $\small{D}$-LA optical purities of the two fermentation methods were above 99.00%. In fe$\small{D}$-batch mode, the maximum $\small{D}$-LA concentration attained by FBB fermentation was 218.8 g/l, which was 37.67% higher than that of free-cell fermentation. Repeate$\small{D}$-batch fermentation was performed to determine the long-term performance of the FBB system, and the data indicated that the average $\small{D}$-LA production rate was 1.62 g/l/h and the average yield was 0.98 g/g. Thus, hydrolyzed corn flour fermented by S. inulinus Y2-8 in a FBB may be used for improving $\small{D}$-LA fermentation by using ammonia water as the neutralizing agent.

Spatial Characteristics in the Labor Process of the Footwear Industry in Busan Metropolitan Area (부산 신발산업 노동과정의 공간적 특성)

  • Lee, Chul-Woo;Ju, Mee-Soon
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.2
    • /
    • pp.55-70
    • /
    • 2001
  • This research is to analyze spatial characteristics of labor process at the labor properties in footwear industries in Busan Metropolitan area. The production process of a footwear industry is mainly composed of the development and production of goods and design, the development of component parts and materials and the assembly of parts to be end products, and the marketing. Each process inclines to concentrate in a region having the needed labor; therefore, a manufacturing factory for each process attempts to be located at the different places. The critical core functions such as the development of products and design, the development and production of critical component parts and material, and the marketing are carried out by manufacturing companies with the trademark of the products. These functions intend to be located in the Sasang industrial complex in Busan city and Seoul metropolitan area. The function such as the development and production of major component parts and materials needs high skilled technicians and well trained laborer, and inclines to be located in traditional footwear industrial regions. The assembling process is carried out by skilled females and/or unskilled labors, and attempt to be accompanied with critical core functions or outsourcing. This process has been spatially concentrated in the traditional footwear industrial areas; but recently it extends to the developing countries. The development and production of materials and the production of component parts mainly depending on male labors incline to be located in the developed countries for critical core component parts and materials, and to be located in Busan for major components parts and materials. The production of standardized components parts and materials are carried out in the less developed countries.

  • PDF

Optimization of culture conditions of Bacillus subtilis with α-glucosidase inhibitory activity

  • Kim, Yong-Soon;Ju, Wan-Taek;Kim, Hyun-Bok;Sung, Gyoo-Byung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.33 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • 1-Deoxynojirimycin (DNJ) have been extensively investigated for their α-glucosidase inhibitor on postprandial hyperglycemia, and applied in nutraceuticals and medicine for preventing or delaying progression of type 2 diabetes. However, the amount of DNJ in mulberry leaves is low (about 0.1%), therefore, more effective extraction method is needed. This study was performed to develop microbial DNJ for biological methods of DNJ as an alternative to the chemical methods. In this study, we obtained evidence for Bacillus subtilis that produce DNJ in large quantities by high performance liquid chromatography. Inhibition of α-glucosidase activity was determined to DNJ production or non-production. Investigation of the effect of mulberry leaves powder concentration (1~5%), using the DNJ high-production bacteria, provided evidence for microbial mass production of DNJ. When the 4% mulberry leaf powder for 9 days was used, the α-glucosidase inhibitory activity was over the 85%. Also, the results presented in this study confirm DNJ yield's increasement in microbes using the various of nutrients and provide insight of ways to improve DNJ yields in microorganisms.

Production Process Analysis based on Information Strategy Planning with Present Condition Diagnosis of Small FRP Shipyards (소형 FRP 조선소 현황 진단과 정보 전략 계획 방법론 기반의 생산 공정 분석)

  • Kim, Hyun-Woo;Hwang, Hun-Gyu;Shin, Il-Sik;Cho, Je-Hyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.5
    • /
    • pp.353-361
    • /
    • 2016
  • Recently, the small shipyard companies have difficulties that causes by depression of shipbuilding industry. The small shipyard companies need some strategies to overcome the slump in shipbuilding industry field. In this paper, we conduct the survey for present condition diagnosis of small shipyard companies, and analyze the production process based on Information Strategy Planning(ISP) method. When analyze based on ISP, we apply IDEF0 and LOVC technique to analyze the production process of small shipyard companies. Also we conduct the gap analysis between the analyzed present condition and the requirements of improvement. Therefore, the most important result of the analysis is to establish a system for enterprise planning and management, which customized for small shipyard companies, with satisfying economic feasibility and usability.

Enhanced Production of Maltotetraose-producing Amylase by Recombinant Bacillus subtilis LKS88 in Fed-batch Cultivation

  • KIM, DAE-OK;KYUNGMOON PARK;JAE-WOOK SONG;JIN-HO SEO
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.6
    • /
    • pp.417-422
    • /
    • 1997
  • Recombinant Bacillus subtilis LKS88[pASA240] containing the amylase gene from Streptomyces albus KSM-35 was exploited in fed-batch cultivation for mass production of maltotetraose-producing amylase. The effects of dissolved oxygen, additional organic nutrients (peptone and yeast extract) and mixed carbon sources (glucose plus soluble starch) on amylase production were examined in fed-batch operations in an effort to determine the optimum conditions for a maximum amylase productivity. Under the optimum conditions, maximum amylase activity was about 4.2 times higher than that obtained in batch cultivations, indicating that mass production of maltotetraose-producing amylase could be accomplished in fed-batch cultivation of the recombinant B. subtilis strain.

  • PDF

Construction of a Genetic System for Streptomyces albulus PD-1 and Improving Poly(ε-ʟ-lysine) Production Through Expression of Vitreoscilla Hemoglobin

  • Xu, Zhaoxian;Cao, Changhong;Sun, Zhuzhen;Li, Sha;Xu, Zheng;Feng, Xiaohai;Xu, Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.11
    • /
    • pp.1819-1826
    • /
    • 2015
  • Poly(ε-ʟ-lysine) (ε-PL) is a novel bioactive polymer secreted by filamentous bacteria. Owing to lack of a genetic system for most ε-PL-producing strains, very little research on enhancing ε-PL biosynthesis by genetic manipulation has been reported. In this study, an effective genetic system was established via intergeneric conjugal transfer for Streptomyces albulus PD-1, a famous ε-PL-producing strain. Using the established genetic system, the Vitreoscilla hemoglobin (VHb) gene was integrated into the chromosome of S. albulus PD-1 to alleviate oxygen limitation and to enhance the biosynthesis of ε-PL in submerged fermentation. Ultimately, the production of ε-PL increased from 22.7 g/l to 34.2 g/l after fed-batch culture in a 5 L bioreactor. Determination of the oxygen uptake rate, transcriptional level of ε-PL synthetase gene, and ATP level unveiled that the expression of VHb in S. albulus PD-1 enhanced ε-PL biosynthesis by improving respiration and ATP supply. To the best of our knowledge, this is the first report on enhancing ε-PL production by chromosomal integration of the VHb gene in an ε-PL-producing strain, and it will open a new avenue for ε-PL production.

I/O materials management system (생산공정의 입출고관리시스템에 관한 연구)

  • Park, Jong-Hyuk;Han, Jung-Soo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.642-646
    • /
    • 2006
  • This is a study on I/O materials management system of production line. They usually use bar code in existing materials management systems but there we many difficult factors. If RFID technic is applied to I/O materials management system, we can manage information of materials efficiently, and save time and cost by decreasing works. In this paper, for I/O materials management system of production line, I/O materials management system, warehousing processor, deiver processor, raise processor, material requirement processor and processor, Also we verify these processors in a point of user view.

  • PDF