Browse > Article
http://dx.doi.org/10.4014/jmb.1506.06084

Construction of a Genetic System for Streptomyces albulus PD-1 and Improving Poly(ε-ʟ-lysine) Production Through Expression of Vitreoscilla Hemoglobin  

Xu, Zhaoxian (State Key Laboratory of Materials-Oriented Chemical Engineering)
Cao, Changhong (State Key Laboratory of Materials-Oriented Chemical Engineering)
Sun, Zhuzhen (State Key Laboratory of Materials-Oriented Chemical Engineering)
Li, Sha (State Key Laboratory of Materials-Oriented Chemical Engineering)
Xu, Zheng (State Key Laboratory of Materials-Oriented Chemical Engineering)
Feng, Xiaohai (State Key Laboratory of Materials-Oriented Chemical Engineering)
Xu, Hong (State Key Laboratory of Materials-Oriented Chemical Engineering)
Publication Information
Journal of Microbiology and Biotechnology / v.25, no.11, 2015 , pp. 1819-1826 More about this Journal
Abstract
Poly(ε-ʟ-lysine) (ε-PL) is a novel bioactive polymer secreted by filamentous bacteria. Owing to lack of a genetic system for most ε-PL-producing strains, very little research on enhancing ε-PL biosynthesis by genetic manipulation has been reported. In this study, an effective genetic system was established via intergeneric conjugal transfer for Streptomyces albulus PD-1, a famous ε-PL-producing strain. Using the established genetic system, the Vitreoscilla hemoglobin (VHb) gene was integrated into the chromosome of S. albulus PD-1 to alleviate oxygen limitation and to enhance the biosynthesis of ε-PL in submerged fermentation. Ultimately, the production of ε-PL increased from 22.7 g/l to 34.2 g/l after fed-batch culture in a 5 L bioreactor. Determination of the oxygen uptake rate, transcriptional level of ε-PL synthetase gene, and ATP level unveiled that the expression of VHb in S. albulus PD-1 enhanced ε-PL biosynthesis by improving respiration and ATP supply. To the best of our knowledge, this is the first report on enhancing ε-PL production by chromosomal integration of the VHb gene in an ε-PL-producing strain, and it will open a new avenue for ε-PL production.
Keywords
Poly(ε-ʟ-lysine); submerged fermentation; Vitreoscilla hemoglobin; dissolved oxygen; Streptomyces albulus; genetic system;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kahar P, Kobayashi K, Iwata T, Hiraki J, Kojima M, Okabe M. 2002. Production of ε-polylysine in an airlift bioreactor (ABR). J. Biosci. Bioeng. 93: 274-280.   DOI
2 Khosla C, Curtis J, DeModena J, Rinas U, Bailey J. 1990. Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coli. Nat. Biotechnol. 8: 849-853.   DOI
3 Kieser T. 2000. Practical Streptomyces Genetics. John Innes Foundation.
4 Liu SR, Zhang JM. 2015. Efficient production of ε-poly-ʟ-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding. J. Microbiol. Biotechnol. 25: 358-365.   DOI
5 Ortiz-Marquez JCF, Nascimento MD, Zehr JP, Curatti L. 2013. Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol. 31: 521-529.   DOI
6 Ma Z, Liu J, Bechthold A, Tao L, Shentu X, Bian Y, Yu X. 2014. Development of intergeneric conjugal gene transfer system in Streptomyces diastatochromogenes 1628 and its application for improvement of toyocamycin production. Curr. Microbiol. 68: 180-185.   DOI
7 Mazodier P, Petter R, Thompson C. 1989. Intergeneric conjugation between Escherichia coli and Streptomyces species. J. Bacteriol. 171: 3583-3585.   DOI
8 Nozzi NE, Desai SH, Case AE, Atsumi S. 2014. Metabolic engineering for higher alcohol production. Metab. Eng. 25: 174-182.   DOI
9 Park K, Kim K, Howard A, Stark B, Webster D. 2002. Vitreoscilla hemoglobin binds to subunit I of cytochrome boubiquinol oxidases. J. Biol. Chem. 277: 33334-33337.   DOI
10 Phornphisutthimas S, Sudtachat N, Bunyoo C, Chotewutmontri P, Panijpan B, Thamchaipenet A. 2010. Development of an intergeneric conjugal transfer system for rimocidin-producing streptomyces rimosus. Lett. Appl. Microbiol. 50: 530-536.   DOI
11 Pigac J, Schrempf H. 1995. A simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by electroporation. Appl. Environ. Microbiol. 61: 352-356.
12 Ren XD, Chen XS, Zeng X, Wang L, Tang L, Mao ZG. 2015. Acidic pH shock induced overproduction of ε-poly-ʟ-lysine in fed-batch fermentation by Streptomyces sp. M-Z18 from agro-industrial by-products. Bioproc. Biosyst. Eng. 38: 1113-1125.   DOI
13 Stark B, Pagilla K, Dikshit K. 2015. Recent applications of Vitreoscilla hemoglobin technology in bioproduct synthesis and bioremediation. Appl. Microbiol. Biotechnol. 94: 1-10.
14 Rong LS, Zhang JM, Yang XJ. 2012. Enhanced ε-poly-ʟ-lysine production from Streptomyces ahygroscopicus by a combination of cell immobilization and in situ adsorption. J. Microbiol. Biotechnol. 22: 1218-1223.   DOI
15 Shih IL, Shen MH, Van YT. 2006. Microbial synthesis of poly (ε-lysine) and its various applications. Bioresour. Technol. 97: 1148-1159.   DOI
16 Shukla S, Singh A, Pandey A, Mishra A. 2012. Review on production and medical applications of ε-polylysine. Biochem. Eng. J. 65: 70-81.   DOI
17 Suen YL, Tang H, Huang J, Chen F. 2014. Enhanced production of fatty acids and astaxanthin in Aurantiochytrium sp. by the expression of Vitreoscilla hemoglobin. J. Agric. Food Chem. 62: 12392-12398   DOI
18 Wang G, Hosaka T, Ochi K. 2008. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl. Environ. Microbiol. 74: 2834-2840.   DOI
19 Tang B, Qiu B, Huang S, Yang K, Bin L, Fu F, Yang H. 2015. Distribution and mass transfer of dissolved oxygen in a multi-habitat membrane bioreactor. Bioresour. Technol. 182: 323-328.   DOI
20 Wakabayashi S, Matsubara H, Webster D. 1986. Primary sequence of a dimeric bacterial haemoglobin from Vitreoscilla. Nature 322: 481-483.   DOI
21 Wei X, Chen G. 2008. Applications of the VHb gene vgb for improved microbial fermentation processes. Methods Enzymol. 436: 273-287.   DOI
22 Yamanaka K, Maruyama C, Takagi H, Hamano Y. 2008. ε-Poly-ʟ-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat. Chem. Biol. 4: 766-772.   DOI
23 Xia J, Xu H, Feng X, Xu Z, Chi B. 2013. Poly (ʟ-diaminopropionic acid), a novel non-proteinic amino acid oligomer co-produced with poly(ε-ʟ-lysine) by Streptomyces albulus PD-1. Appl. Microbiol. Biotechnol. 97: 7597-7605.   DOI
24 Xu Z, Bo F, Xia J, Sun Z, Li S, Feng X, Xu H. 2015. Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochem. Eng. J. 94: 58-64.   DOI
25 Yamanaka K, Kito N, Imokawa Y, Maruyama C, Utagawa T, Hamano Y. 2010. Mechanism of epsilon-poly-ʟ-lysine production and accumulation revealed by identification and analysis of an epsilon-poly-ʟ-lysine-degrading enzyme. Appl. Environ. Microbiol. 76: 5669-5675.   DOI
26 Cheng YQ, Tang GL, Shen B. 2002. Identification and localization of the gene cluster encoding biosynthesis of the antitumor macrolactam leinamycin in Streptomyces atroolivaceus S-140. J. Bacteriol. 184: 7013-7024.   DOI
27 Zhou T, Kim B, Zhong J. 2014. Enhanced production of validamycin A in Streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl. Microbiol. Biotechnol. 98: 7911-7922.   DOI
28 Zhu H, Sun S, Zhang S. 2011. Enhanced production of total flavones and exopolysaccharides via Vitreoscilla hemoglobin biosynthesis in Phellinus igniarius. Bioresour. Technol. 102: 1747-1751.   DOI
29 Bankar SB, Singhal RS. 2013. Panorama of poly-ε-lysine. RSC Adv. 3: 8586-8603.   DOI
30 Bankar SB, Singhal RS. 2011. Improved poly-ε-lysine biosynthesis using Streptomyces noursei NRRL 5126 by controlling dissolved oxygen during fermentation. J. Microbiol. Biotechnol. 21: 652-658.
31 Gao W, Chung CH, Li J, Lee JW. 2015. Enhanced production of cellobiase by marine bacterium Cellulophaga lytica LBH-14 from rice bran under optimized conditions involved in dissolved oxygen. Biotechnol. Bioprocess Eng. 20: 131-138.   DOI
32 Chi P, Webster D, Stark B. 2009. Vitreoscilla hemoglobin aids respiration under hypoxic conditions in its native host. Microbiol. Res. 164: 267-275.   DOI
33 Flett F, Mersinias V, Smith CP. 1997. High efficiency interg eneric conjug al transfer of plasmid DNA from Escherichia coli to methyl DNA-restricting streptomycetes. FEMS Microbiol. Lett. 155: 223-229.   DOI
34 Frey A, Kallio P. 2003. Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnology. FEMS Microbiol. Rev. 27: 525-545.   DOI
35 Hamano Y, Arai T, Ashiuchi M, Kino K. 2013. NRPSs and amide ligases producing homopoly(amino acid)s and homooligo(amino acid)s. Nat. Prod. Rep. 30: 1087-1097.   DOI
36 Hamano Y, Nicchu I, Hoshino Y, Kawai T, Nakamori S, Takagi H. 2005. Development of gene delivery systems for the ε-poly-ʟ-lysine producer, Streptomyces albulus. J. Biosci. Bioeng. 99: 636-641.   DOI
37 Hwang YS, Lee JY, Kim ES, Choi CY. 2001. Optimization of transformation procedures in avermectin high-producing Streptomyces avermitilis. Biotechnol. Lett. 23: 457-462.   DOI
38 Jeong JW, Park KM, Chung M, Won JI. 2015. Influence of Vitreoscilla hemoglobin gene expression on 2,3-butanediol production in Klebsiella oxytoca. Biotechnol. Bioprocess Eng. 20: 10-17.   DOI
39 Kahar P, Iwata T, Hiraki J, Park EY, Okabe M. 2001. Enhancement of ε-polylysine production by Streptomyces albulus strain 410 using pH control. J. Biosci. Bioeng. 91: 190-194.   DOI