• Title/Summary/Keyword: Production Forecasting

Search Result 223, Processing Time 0.025 seconds

A Hybrid Forecasting Framework based on Case-based Reasoning and Artificial Neural Network (사례기반 추론기법과 인공신경망을 이용한 서비스 수요예측 프레임워크)

  • Hwang, Yousub
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.4
    • /
    • pp.43-57
    • /
    • 2012
  • To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.

INBOUND TOURISM IN UZBEKISTAN: DEMAND ANALYSIS AND FORECASTING

  • Kim, Pyongil;Shirin, Maxamediva;Nargiza, Juraeva
    • Asia Pacific Journal of Business Review
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Tourism development stimulates job creation and the development of other sectors of the economy. More than 30 sectors of the economy are connected to tourism. It distributes resources between sectors and stimulates of development of such sectors like transport, communications, services, trade, construction, and the production of consumer goods. All these increase the importance of tourism as well as forecasting it by analyzing the demand. This study is a review on inbound tourism of Uzbekistan. The study will examine regression analysis as an effective tool that plays an important role as well as in the field of tourism demand analysis. In this study, firstly the estimating tourism demand is explained, secondly, the regression analysis is examined as an estimating tool of tourism demand. The paper includes a country study dedicated to the Tourism market of Uzbekistan. Nevertheless, the forecast on the inbound tourism of Uzbekistan was developed by using some statistical data.

A Study on the New Product Forecasting Methodology (신제품 수요예측 방법론 연구)

  • Lim, Jong-In;Oh, Hyung-Sik
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.18 no.2
    • /
    • pp.51-63
    • /
    • 1992
  • It is commonly accepted that the demand forecasting data play a vital role in deciding strategic variables such as the optimal market entry time, the price structure and the production capacity etc. In case of the new product, however, it is hard to apply the well known regression-type methodologies. In this study, we survey the characteristics of various types of new product demand forecasting(NPDF) methodologies which are useful in case the historical data are not available. Further, we explore the possibility of incorporating the NPDF methodologies and develope the unified infra-structure of the NPDF methodologies. Finally we propose an integrated prototype of the NPDF model.

  • PDF

경영정책지원 시스템의 실행방안

  • 김연민
    • Korean Management Science Review
    • /
    • v.1
    • /
    • pp.35-45
    • /
    • 1984
  • This paper deals with the case study of the establishment of decision supporting system in shipbuilding industory. Facts or information of shipbuilding, sales, finance, production strategic planning in shipbuilding industry are considered. General transportation model for shipyard production schedule is formulated, and shipbuilding demand forecasting scheme is also introduced. This paper shows the several methods of DSS in shipbuilding industry. But production schedule strategic planning system by OR technique is emphasized. For the realization of DSS in shipbuilding industry, another efforts (data gathering and programming etc.) should be given on the basis of these methods.

  • PDF

Decision-making system for the resource forecasting and risk management using regression algorithms (회귀알고리즘을 이용한 자원예측 및 위험관리를 위한 의사결정 시스템)

  • Han, Hyung-Chul;Jung, Jae-Hun;Kim, Sin-Ryeong;Kim, Young-Gon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.6
    • /
    • pp.311-319
    • /
    • 2015
  • In this paper, in order to increase the production efficiency of the industrial plant, and predicts the resources of the manufacturing process, we have proposed a decision-making system for resource implementing the risk management effectively forecasting and risk management. A variety of information that occurs at each step efficiently difficult the creation of detailed process steps in the scenario you want to manage, is a frequent condition change of manufacturing facilities for the production of various products even within the same process. The data that is not contiguous products production cycle also not constant occurs, there is a problem that needs to check the variation in the small amount of data. In order to solve these problems, data centralized manufacturing processes, process resource prediction, risk prediction, through a process current status monitoring, must allow action immediately when a problem occurs. In this paper, the range of change in the design drawing, resource prediction, a process completion date using a regression algorithm to derive the formula, classification tree technique was proposed decision system in three stages through the boundary value analysis.

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

A Study of Dynamic Behavior of Production - Inventory Control System (생산(生産) - 재고관리(在庫管理) 시스템의 동적거동(動的擧動)에 관한 연구(硏究))

  • Kim, Man-Sik;Park, Yong-Seon
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1979
  • This paper discusses an application of discrete variable Servo Theory to the analysis of the effectiveness of production-inventory control system which uses exponential smoothing as a specific forecasting technique by establishing a new model which consists of such three departments as production planning, production, and inventory. The objective of the new production-inventory model is to keep the production to the optimal level of minimum production cost in production planning problem for obtaining, the stability of inventory subject to demand variation. On this basis, the dynamic characteristic of the system with the change of the parameters is clarified by the numerical analysis. The results of the numerical analysis show the effect that is obtained by the simultaneous stability of production and inventory as soon as possible.

  • PDF

Enterprise-wide Production Data Model for Decision Support System and Production Automation (생산 자동화 및 의사결정지원시스템 지원을 위한 전사적 생산데이터 프레임웍 개발)

  • Jang J.D.;Hong S.S.;Kim C.Y.;Bae S.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.615-616
    • /
    • 2006
  • Many manufacturing companies manage their production-related data for quality management and production management. Nevertheless, production related-data should be closely related to each other Stored data is mainly used to monitor their process and products' error. In this paper, we provide an enterprise-wide production data model for decision support system and product automation. Process data, quality-related data, and test data are integrated to identify the process inter or intra dependency, the yield forecasting, and the trend of process status. In addition, it helps the manufacturing decision support system to decide critical manufacturing problems.

  • PDF

Production Volume Forecast using Neural Networks (신경회로망을 이용한 생산량 예측에 관한 연구)

  • Lee, Oh-Keol;Song, Ho-Shin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.62-64
    • /
    • 2001
  • This paper presents a forecasting method for production volume of each model manufacture d goods by using Back-Propagation technique of Neural Networks. As the learning constant and the momentum constant are respectively 0.65 and 0.94, the teaming number is the least, and the forecating accuracy is the highest. When the learning process is more than 1,000 times, the accurate forecating was possible regardless of kind of product.

  • PDF

Production Volume Forecating of each Manufactured Goods by Neural Networks (신경회로망에 의한 제품별 생산량 예측에 관한 연구)

  • Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.298-300
    • /
    • 2001
  • This paper presents a forecasting method for production volume of each model manufactured goods by using Back-Propagation technique of Neural Networks. As the learning constant and the momentum constant are respectively 0.65 and 0.94, the learning number is the least, and the forecating accuracy is the highest. When the learning process is more than 1,000 times, the accurate forecating was possible regardless of kind of product.

  • PDF