This study investigates the influence of the innovativeness of consumers on extended products in brand extensions. 300 surveys were distributed and 283 were used in the final analysis. The results of this study show that consumers evaluate similar product category (i.e., sportswear) better than a dissimilar category (i.e., cosmetics) in brand extension. In addition, innovative consumers evaluated extended product better regardless of similarity with the original brand. The results showed that consumers with higher level of innovativeness were less likely to evaluate differently between a similar product and dissimilar product categories in apparel brand extension.
시퀀스란 두 항목 간의 순서가 존재하는 데이터를 말하며, 고객 한 명이 구매한 상품들이 나열된 구매이력 데이터는 대표적인 시퀀스 데이터 중 하나이다. 일반적으로 모든 상품은 대분류/ 중분류/ 소분류와 같은 상품 분류 체계를 가지며, 서로 다른 상품이더라도 비슷하다면 그 특성에 따라 동일한 범주로 분류된다. 따라서 본 논문에서는 두 구매이력 시퀀스 비교 시 상품의 구매 순서를 고려할 뿐만 아니라, 비교하고자 하는 두 상품이 다르더라도 서로 동일한 상품 군에 속한다면 더 높은 유사도를 부여하여 계산한다. 특히 구매이력 시퀀스 유사도 계산 성능에 직접적인 영향을 미치는 시퀀스 유사도 측정 방법을 선택하기 위해 본 연구에서는 대표적인 시퀀스 간 유사도 측정 방법인 레벤슈타인 거리, 동적 타임 워핑 거리, 니들만-브니쉬 유사도의 성능을 비교하였으며, 항목간의 계층구조도 반영하여 계산하도록 확장하였다. 기존의 유사도 측정 방법의 경우 시퀀스 내 상품 비교 시 상품의 일치 유무에 따라 단순히 0 또는 1의 값을 부여하여 계산한다. 하지만 제안 방법의 경우 서로 다른 상품이더라도 두 상품 간의 연관정도를 다르게 부여하기 위하여 상품 분류 트리를 사용하여 0에서 1 사이의 값을 가지도록 세분화하였다. 실험을 통해 세 알고리즘에 제안 방법을 적용한 경우 기존 방법에 비하여 구매이력 시퀀스 간의 유사도를 더 정확히 측정함을 확인하였다. 또한 정확성 측정 비교 실험을 통해 동적 타임 워핑 유사도가 다른 두 유사도 측정 방법에 비하여 시퀀스 내 상품의 연관 정도를 고려할 뿐만 아니라 두 시퀀스의 길이가 다른 경우에도 좋은 성능을 보였기 때문에 구매이력 데이터에서 시퀀스 간의 유사도 비교 시 가장 적합한 측정 방법임을 확인하였다.
In this research, we examine whether and why temporal distance influences evaluations of two different types of brand extensions: concept-based extensions, defined as extensions primarily based on the importance or relevance of brand concepts to extension products; and similarity-based extensions, defined as extensions primarily based on the amount of feature similarity at the product-category level. In Study 1, we test the hypothesis that concept-based extensions are evaluated more favorably when they are framed to launch in the distant rather than in the near future, whereas similaritybased extensions are evaluated more favorably when they are framed to launch in the near rather than in the distant future. In Study 2, we confirm that this time-dependent differential evaluation is driven by the difference in construal level between the bases of the two types of extensions - i.e., brand-concept consistency and product-category feature similarity. As such, we find that conceptbased extensions are evaluated more favorably under the abstract than concrete mindset, whereas similarity-based extensions are evaluated more favorably under the concrete than abstract mindset. In Study 3, we extend to the case for a broad brand (i.e., brands that market products across multiple categories), finding that making accessible a specific product category of a broad parent brand influences evaluations of near-future, but not distant-future, brand extensions. Combined together, our findings suggest that temporal distance influences brand extension evaluation through its effect on the importance placed on brand concepts and feature similarity. That is, consumers rely on different bases to evaluate brand extensions, depending on their perception of when the extensions take place and on under what mindset they are placed. This research makes theoretical contributions to the brand extension research by identifying one important determinant to brand extension evaluation and also uncovering its underlying dynamics. It also contributes to expanding the scope of the construal level theory by putting forth a novel interpretation of two bases of perceived fit in terms of construal level. Marketers who are about to launch and advertise brand extensions may benefit by considering temporal-distance information in determining what content to deliver about extensions in their communication efforts. Conceptual relation of a parent brand to extensions needs to be emphasized in the distant future, whereas feature similarity should be highlighted in the near future.
In this paper we consider the notion of fuzzy relation as a generalization of that of fuzzy set. For a complete Heyting algebra L. the category set(L) of all L-fuzzy sets is shown to be a bireflective subcategory of the category Rel(L) of all L-fuzzy relations and L-fuzzy relation preserving maps. We investigate categorical structures of subcategories of Rel(L) in view of quasitopos. Among those categories, we include the category L-fuzzy similarity relations with respect to both max-min and max-product compositions, respectively, as a cartesian closed topological category. Moreover, we describe exponential objects explicitly in terms of function space.
In an online shopping site or offline store, products purchased by each customer over time form the purchase history of the customer. Also, in most retailers, products have a product taxonomy, which represents a hierarchical classification of products. Considering the product taxonomy, the lower the level of the category to which two products both belong, the more similar the two products. However, there has been little work on similarity measures for sequences considering a hierarchical classification of elements. In this paper, we propose new similarity measures for purchase histories considering not only the purchase order of products but also the hierarchical classification of products. Unlike the existing methods, where the similarity between two elements in sequences is only 0 or 1 depending on whether two elements are the same or not, the proposed method can assign any real number between 0 and 1 considering the hierarchical classification of elements. We apply this idea to extend three existing representative similarity measures for sequences. We also propose an efficient computation method for the proposed similarity measures. Through various experiments, we show that the proposed method can measure the similarity between purchase histories very effectively and efficiently.
본 연구는 복합원산지제품에 대한 평가를 파악하기 위해 제품의 카테고리 유사성에 따라 구분하고 매장유형 별로 비교해 봄으로써, 복합원산지제품을 생산하는 기업들에게 실무적으로 활용 가능한 대안을 제시하고자 하였다. 이를 위해 본 연구는 복합원산지제품의 평가를 제품카테고리 별로 비교하기 위해 소비자들의 심리적 기저를 바탕으로 공적사치재, 공적필수재, 사적사치재, 사적필수재로 구분하여 분석에 적용하였으며, 매장의 유형은 백화점/직영점, 아울렛/할인매장으로 구분하여 측정의 정교화를 기하고자 하였다. 검증결과, 제품유형과 매장유형에 따라 브랜드평가 및 매장평가는 상호작용효과가 있는 것으로 나타났다. 구체적으로 공적사치재의 경우 브랜드평가와 매장평가 모두 아울렛/할인매장이 백화점/직영매장 보다 긍정적인 평가가 나타나는 것으로 분석되었으며, 사적필수재의 경우는 브랜드평가에서 큰 차이를 보이지 않았으나 매장평가에서 백화점/직영매장이 아울렛/할인매장 보다 상대적으로 긍정적인 평가를 보이는 것을 확인할 수 있었다. 이를 통해, 각각의 제품 별로 판매매장 유형에 따라 소비자들의 평가가 달라질 수 있음을 검증하였다.
Categorization means the process labeling or identifying an object based on what people already know or its similarity for people to be easily perceptible in external environment. If it is categorized, it is schematically conjectured from typical characteristic of the category. In this sense, the categorization of new products has an important effect upon the market performance. Nevertheless, the categorization of innovative new products is not easy and occasionally very ambiguous. In this study, we discuss how to strengthen the categorization strategy of new hybrid IT products through complementary bundling. The model of this study is based on Technology Acceptance Model (TAM) with resistance variable and verifies the statistical significance by undertaking a survey on consumers' awareness. In addition, we review the moderating effects of prior knowledge in the adoption process of complementary bundling. Through this analysis, we find out the structural relationship among the factors affecting adoption of complementary bundling. Also, it show that the influence of prior knowledge in respect of the adoption process is greater than others in case that there exists significant heterogeneity among strategic categories and complements. In conclusion, these findings suggest the following managerial implication. The categorization strategy of new hybrid IT product can be enhanced by complementary bundling, but the suitability among strategic category and complements should be evaluated exhaustively.
인공지능 기술의 급속한 발전과 함께 빅데이터의 상당 부분을 차지하는 비정형 텍스트 데이터로부터 의미있는 정보를 추출하기 위한 다양한 연구들이 활발히 진행되고 있다. 비즈니스 인텔리전스 분야에서도 새로운 시장기회를 발굴하거나 기술사업화 주체의 합리적 의사결정을 돕기 위한 많은 연구들이 이뤄져 왔다. 본 연구에서는 기업의 성공적인 사업 추진을 위해 핵심적인 정보 중의 하나인 시장규모 정보를 도출함에 있어 기존에 제공되던 범위보다 세부적인 수준의 제품군별 시장규모 추정이 가능하고 자동화된 방법론을 제안하고자 한다. 이를 위해 신경망 기반의 시멘틱 단어 임베딩 모델인 Word2Vec 알고리즘을 적용하여 개별 기업의 생산제품에 대한 텍스트 데이터를 벡터 공간으로 임베딩하고, 제품명 간 코사인 거리(유사도)를 계산함으로써 특정한 제품명과 유사한 제품들을 추출한 뒤, 이들의 매출액 정보를 연산하여 자동으로 해당 제품군의 시장규모를 산출하는 알고리즘을 구현하였다. 실험 데이터로서 통계청의 경제총조사 마이크로데이터(약 34만 5천 건)를 이용하여 제품명 텍스트 데이터를 벡터화 하고, 한국표준산업분류 해설서의 산업분류 색인어를 기준으로 활용하여 코사인 거리 기반으로 유사한 제품명을 추출하였다. 이후 개별 기업의 제품 데이터에 연결된 매출액 정보를 기초로 추출된 제품들의 매출액을 합산함으로써 11,654개의 상세한 제품군별 시장규모를 추정하였다. 성능 검증을 위해 실제 집계된 통계청의 품목별 시장규모 수치와 비교한 결과 피어슨 상관계수가 0.513 수준으로 나타났다. 본 연구에서 제시한 모형은 의미 기반 임베딩 모델의 정확성 향상 및 제품군 추출 방식의 개선이 필요하나, 표본조사 또는 다수의 가정을 기반으로 하는 전통적인 시장규모 추정 방법의 한계를 뛰어넘어 텍스트 마이닝 및 기계학습 기법을 최초로 적용하여 시장규모 추정 방식을 지능화하였다는 점, 시장규모 산출범위를 사용 목적에 따라 쉽고 빠르게 조절할 수 있다는 점, 이를 통해 다양한 분야에서 수요가 높은 세부적인 제품군별 시장정보 도출이 가능하여 실무적인 활용성이 높다는 점에서 의의가 있다.
This paper aims to explore the analysis of the meanings and processes of reading online consumer reviews and to construct a substantive theory that explains the process involved with the phenomenon of reading consumer reviews. In order to explore the phenomenon, this study employs a qualitative methodology. Following the grounded theory perspective, the researcher conducted interviews with 17 participants, who have subsequently shopped online and utilized online consumer reviews for shopping, and decidedly employed in-depth interviews with those participants. Through coding and making constant comparison, several themes emerged: improving confidence, trusting reviews, getting a sense of who reviewers are, seeking balance, processing and handling negative reviews, experiencing vicariously, increasing searchability, getting a sense of who they are in terms of similarity, and seeking benefits and the usage situations from consumer based reviews. Among the emerging themes, improving confidence can be considered a core category, which is influenced by the analysis of trusting reviews and the consumer vicarious experiences with a product. Moreover, this study discusses the relationships among the themes. This study concludes with a discussion of the results, implications, and limitations.
본 연구에서는 전형성에 대한 기존의 연구를 이용하여 목적부합속성을 충족하도록 제품이 디자인 된 정도와 외형적 디자인의 물리적 속성 유사정도가 제품 디자인의 전형성에 영향을 미칠 수 있는지를 검증하고, 기존의 연구에서 다른 견해를 보이고 있는 전형성과 선호도간의 관계를 전형성의 목적부합속성에 의한 차원과 물리적 속성의 유사정도에 의한 차원으로 나누어 각 차원에서 전형성과 선호도간의 관계가 어떻게 달라지는지를 살펴보았다. 연구결과 기존의 연구에서 제시하고 있는 바와 같이 소비자의 제품 디자인에 대한 전형성 판단정도는 그 제품의 디자인이 그 제품을 이용하고자 하는 목적부합속성을 충족시킬 수 있도록 디자인 될수록 디자인의 전형성이 높다고 판단하는 것으로 나타났다. 또한 제품범주 내 다른 구성원들과의 외형적인 디자인 공통속성이 많을수록 그 제품의 디자인이 전형적이라고 판단하는 것으로 나타났다. 한편 본 연구에서 전형성 결정요인의 각 차원에 따른 전형성과 선호도간의 관계에 대한 검증결과, 목적부합속성을 많이 충족시키는 디자인일수록 소비자는 선호하게 된다고 할 수 있으나, 그 외형적인 디자인이 제품범주 내 다른 구성원들과 유사한 정도가 중간정도일 때 가장 선호되며, 아주 비슷하지 않거나 매우 비슷한 경우에는 소비자의 선호도가 낮은 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.