• Title/Summary/Keyword: Processing technique

Search Result 5,697, Processing Time 0.035 seconds

Principal component analysis in C[11]-PIB imaging (주성분분석을 이용한 C[11]-PIB imaging 영상분석)

  • Kim, Nambeom;Shin, Gwi Soon;Ahn, Sung Min
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.1
    • /
    • pp.12-16
    • /
    • 2015
  • Purpose Principal component analysis (PCA) is a method often used in the neuroimagre analysis as a multivariate analysis technique for describing the structure of high dimensional correlation as the structure of lower dimensional space. PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of correlated variables into a set of values of linearly independent variables called principal components. In this study, in order to investigate the usefulness of PCA in the brain PET image analysis, we tried to analyze C[11]-PIB PET image as a representative case. Materials and Methods Nineteen subjects were included in this study (normal = 9, AD/MCI = 10). For C[11]-PIB, PET scan were acquired for 20 min starting 40 min after intravenous injection of 9.6 MBq/kg C[11]-PIB. All emission recordings were acquired with the Biograph 6 Hi-Rez (Siemens-CTI, Knoxville, TN) in three-dimensional acquisition mode. Transmission map for attenuation-correction was acquired using the CT emission scans (130 kVp, 240 mA). Standardized uptake values (SUVs) of C[11]-PIB calculated from PET/CT. In normal subjects, 3T MRI T1-weighted images were obtained to create a C[11]-PIB template. Spatial normalization and smoothing were conducted as a pre-processing for PCA using SPM8 and PCA was conducted using Matlab2012b. Results Through the PCA, we obtained linearly uncorrelated independent principal component images. Principal component images obtained through the PCA can simplify the variation of whole C[11]-PIB images into several principal components including the variation of neocortex and white matter and the variation of deep brain structure such as pons. Conclusion PCA is useful to analyze and extract the main pattern of C[11]-PIB image. PCA, as a method of multivariate analysis, might be useful for pattern recognition of neuroimages such as FDG-PET or fMRI as well as C[11]-PIB image.

  • PDF

Comparison of internal and marginal fit of crown according to milling order in a single machinable wax disc (단일 절삭가공용 왁스 디스크 내에서 순차적 절삭가공 순서에 따른 크라운의 내면 및 변연 적합도 비교)

  • Song, Jun-Beom;Lee, Jonghyuk;Ha, Seung-Ryong;Choi, Yu-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.59 no.4
    • /
    • pp.395-404
    • /
    • 2021
  • Purpose. The purpose of present study was to evaluate the effect of changing structural stability of wax disc on the fit of prosthesis when the milling proceeded in order. Materials and methods. Prepared maxillary left first molar was used to fabricate a Ni-Cr alloy reference model. This was scanned to design crown and then wax pattern was milled, invested and cast to fabricate prosthesis. The wax patterns located in a row centrally within a single wax disc were set into a total of five groups ranging from WM1 group that was first milled to WM5 group that was last milled and the number of each group was set as 10. Silicone replica technique was used to measure the marginal gap, axial internal gap, line angle internal gap, occlusal internal gap. Data was evaluated with one-way ANOVA with significance level set at α = .05 and then Tukey HSD test was conducted for post analysis. Results. Marginal gap measured in each group, it was 40.41 ± 2.15 ㎛ in WM1 group, 40.44 ± 2.23 ㎛ in WM2 group, 39.96 ± 2.25 ㎛ in WM3 group, 39.96 ± 2.48 ㎛ in WM4 group, and 40.57 ± 2.53 ㎛ in WM5 group. No significant difference was found between groups. The significant difference between the groups was also not found in the axial internal gap, line angle internal gap, and occlusal internal gap. Conclusion. Internal and marginal fit of single crown to the sequential order of milling processing in the single machinable wax disc did not seem to be affected by the sequence.

Host-Based Intrusion Detection Model Using Few-Shot Learning (Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델)

  • Park, DaeKyeong;Shin, DongIl;Shin, DongKyoo;Kim, Sangsoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.271-278
    • /
    • 2021
  • As the current cyber attacks become more intelligent, the existing Intrusion Detection System is difficult for detecting intelligent attacks that deviate from the existing stored patterns. In an attempt to solve this, a model of a deep learning-based intrusion detection system that analyzes the pattern of intelligent attacks through data learning has emerged. Intrusion detection systems are divided into host-based and network-based depending on the installation location. Unlike network-based intrusion detection systems, host-based intrusion detection systems have the disadvantage of having to observe the inside and outside of the system as a whole. However, it has the advantage of being able to detect intrusions that cannot be detected by a network-based intrusion detection system. Therefore, in this study, we conducted a study on a host-based intrusion detection system. In order to evaluate and improve the performance of the host-based intrusion detection system model, we used the host-based Leipzig Intrusion Detection-Data Set (LID-DS) published in 2018. In the performance evaluation of the model using that data set, in order to confirm the similarity of each data and reconstructed to identify whether it is normal data or abnormal data, 1D vector data is converted to 3D image data. Also, the deep learning model has the drawback of having to re-learn every time a new cyber attack method is seen. In other words, it is not efficient because it takes a long time to learn a large amount of data. To solve this problem, this paper proposes the Siamese Convolutional Neural Network (Siamese-CNN) to use the Few-Shot Learning method that shows excellent performance by learning the little amount of data. Siamese-CNN determines whether the attacks are of the same type by the similarity score of each sample of cyber attacks converted into images. The accuracy was calculated using Few-Shot Learning technique, and the performance of Vanilla Convolutional Neural Network (Vanilla-CNN) and Siamese-CNN was compared to confirm the performance of Siamese-CNN. As a result of measuring Accuracy, Precision, Recall and F1-Score index, it was confirmed that the recall of the Siamese-CNN model proposed in this study was increased by about 6% from the Vanilla-CNN model.

A Study on the Ordering Status of Traditional Landscape Design Service in Cultural Heritage (문화재의 전통조경설계용역 발주실태 연구)

  • Kim, Min-Seon;Kim, Choong-Sik;Lee, Jae-Yong
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.39 no.3
    • /
    • pp.33-41
    • /
    • 2021
  • This study identified the scale that traditional landscape design has taken up by analyzing a total of 1037 services for design of cultural heritage that had been ordered by the government agencies from 2018 to 2020, and has drawn characteristics of traditional landscape design focusing on major cases. The results are as follows. First, the number of order cases for traditional landscape design has shown differences annually in the services of design of cultural heritage, but the design amount has been found to have the similar average annually, which confirmed that the same level has been maintained each year. It was found that the number of cases of traditional landscape design requiring responsibilities or participations of landscape engineers for 3 years in the entire design had a high proportion of approximately 26%. Second, the traditional landscape design has required professional knowledge and experiences of landscape engineers that could not be replaced by the business operator for design of cultural heritage consisting of architects. The expertise has been shown differently depending on types of construction. First, the topographical design for the work to build a foundation has required understanding of ground shapes and its elevations and professional knowledge on calculation of the amount of the earth work and the remains maintenance technique etc. The plantation design has required basic knowledge on growth characteristics of trees and the environment for growth and understanding of the vegetation landscape of the past. Meanwhile, the design for traditional pavement and traditional landscape structures and facilities has required the expertise on traditional materials that are different from the modern ones and their processing and construction methods. The understanding of changes to water paths and ecosystem, the principles of fluids, and characteristics of each type of fluid was essential for the design for the ecological landscape work including the maintenance of a water system such as rivers etc. As such, the traditional landscape design has a scale accounting for approximately one fourth of the entire cultural heritage design and requires the expertise differentiated from other fields. This improves the provisions of the current law on limiting the actual design, suggesting the need for the establishment of a traditional landscape design company so that all traditional landscape designs can be carried out by landscape engineers.

Evaluation of Preference by Bukhansan Dulegil Course Using Sentiment Analysis of Blog Data (블로그 데이터 감성분석을 통한 북한산둘레길 구간별 선호도 평가)

  • Lee, Sung-Hee;Son, Yong-Hoon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.3
    • /
    • pp.1-10
    • /
    • 2021
  • This study aimed to evaluate preferences of Bukhansan dulegil using sentiment analysis, a natural language processing technique, to derive preferred and non-preferred factors. Therefore, we collected blog articles written in 2019 and produced sentimental scores by the derivation of positive and negative words in the texts for 21 dulegil courses. Then, content analysis was conducted to determine which factors led visitors to prefer or dislike each course. In blogs written about Bukhansan dulegil, positive words appeared in approximately 73% of the content, and the percentage of positive documents was significantly higher than that of negative documents for each course. Through this, it can be seen that visitors generally had positive sentiments toward Bukhansan dulegil. Nevertheless, according to the sentiment score analysis, all 21 dulegil courses belonged to both the preferred and non-preferred courses. Among courses, visitors preferred less difficult courses, in which they could walk without a burden, and in which various landscape elements (visual, auditory, olfactory, etc.) were harmonious yet distinct. Furthermore, they preferred courses with various landscapes and landscape sequences. Additionally, visitors appreciated the presence of viewpoints, such as observation decks, as a significant factor and preferred courses with excellent accessibility and information provisions, such as information boards. Conversely, the dissatisfaction with the dulegil courses was due to noise caused by adjacent roads, excessive urban areas, and the inequality or difficulty of the course which was primarily attributed to insufficient information on the landscape or section of the course. The results of this study can serve not only serve as a guide in national parks but also in the management of nearby forest green areas to formulate a plan to repair and improve dulegil. Further, the sentiment analysis used in this study is meaningful in that it can continuously monitor actual users' responses towards natural areas. However, since it was evaluated based on a predefined sentiment dictionary, continuous updates are needed. Additionally, since there is a tendency to share positive content rather than negative views due to the nature of social media, it is necessary to compare and review the results of analysis, such as with on-site surveys.

GF/PC Composite Filament Design & Optimization of 3D Printing Process and Structure for Manufacturing 3D Printed Electric Vehicle Battery Module Cover (전기자동차 배터리 모듈 커버의 3D 프린팅 제작을 위한 GF/PC 복합소재 필라멘트 설계와 3D 프린팅 공정 및 구조 최적화)

  • Yoo, Jeong-Wook;Lee, Jin-Woo;Kim, Seung-Hyun;Kim, Youn-Chul;Suhr, Jong-Hwan
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.241-248
    • /
    • 2021
  • As the electric vehicle market grows, there is an issue of light weight vehicles to increase battery efficiency. Therefore, it is going to replace the battery module cover that protects the battery module of electric vehicles with high strength/high heat-resistant polymer composite material which has lighter weight from existing aluminum materials. It also aims to respond to the early electric vehicle market where technology changes quickly by combining 3D printing technology that is advantageous for small production of multiple varieties without restrictions on complex shapes. Based on the composite material mechanics, the critical length of glass fibers in short glass fiber (GF)/polycarbonate (PC) composite materials manufactured through extruder was derived as 453.87 ㎛, and the side feeding method was adopted to improve the residual fiber length from 365.87 ㎛ and to increase a dispersibility. Thus, the optimal properties of tensile strength 135 MPa and Young's modulus 7.8 MPa were implemented as GF/PC composite materials containing 30 wt% of GF. In addition, the filament extrusion conditions (temperature, extrusion speed) were optimized to meet the commercial filament specification of 1.75 mm thickness and 0.05 mm standard deviation. Through manufactured filaments, 3D printing process conditions (temperature, printing speed) were optimized by multi-optimization that minimize porosity, maximize tensile strength, and printing speed to increase the productivity. Through this procedure, tensile strength and elastic modulus were improved 11%, 56% respectively. Also, by post-processing, tensile strength and Young's modulus were improved 5%, 18% respectively. Lastly, using the FEA (finite element analysis) technique, the structure of the battery module cover was optimized to meet the mechanical shock test criteria of the electric vehicle battery module cover (ISO-12405), and it is satisfied the battery cover mechanical shock test while achieving 37% lighter weight compared to aluminum battery module cover. Based on this research, it is expected that 3D printing technology of polymer composite materials can be used in various fields in the future.

Calculation of Dry Matter Yield Damage of Whole Crop Maize in Accordance with Abnormal Climate Using Machine Learning Model (기계학습 모델을 이용한 이상기상에 따른 사일리지용 옥수수 생산량 피해량)

  • Jo, Hyun Wook;Kim, Min Kyu;Kim, Ji Yung;Jo, Mu Hwan;Kim, Moonju;Lee, Su An;Kim, Kyeong Dae;Kim, Byong Wan;Sung, Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.41 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • The objective of this study was conducted to calculate the damage of whole crop maize in accordance with abnormal climate using the forage yield prediction model through machine learning. The forage yield prediction model was developed through 8 machine learning by processing after collecting whole crop maize and climate data, and the experimental area was selected as Gyeonggi-do. The forage yield prediction model was developed using the DeepCrossing (R2=0.5442, RMSE=0.1769) technique of the highest accuracy among machine learning techniques. The damage was calculated as the difference between the predicted dry matter yield of normal and abnormal climate. In normal climate, the predicted dry matter yield varies depending on the region, it was found in the range of 15,003~17,517 kg/ha. In abnormal temperature, precipitation, and wind speed, the predicted dry matter yield differed according to region and abnormal climate level, and ranged from 14,947 to 17,571, 14,986 to 17,525, and 14,920 to 17,557 kg/ha, respectively. In abnormal temperature, precipitation, and wind speed, the damage was in the range of -68 to 89 kg/ha, -17 to 17 kg/ha, and -112 to 121 kg/ha, respectively, which could not be judged as damage. In order to accurately calculate the damage of whole crop maize need to increase the number of abnormal climate data used in the forage yield prediction model.

A Study on Intelligent Skin Image Identification From Social media big data

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.9
    • /
    • pp.191-203
    • /
    • 2022
  • In this paper, we developed a system that intelligently identifies skin image data from big data collected from social media Instagram and extracts standardized skin sample data for skin condition diagnosis and management. The system proposed in this paper consists of big data collection and analysis stage, skin image analysis stage, training data preparation stage, artificial neural network training stage, and skin image identification stage. In the big data collection and analysis stage, big data is collected from Instagram and image information for skin condition diagnosis and management is stored as an analysis result. In the skin image analysis stage, the evaluation and analysis results of the skin image are obtained using a traditional image processing technique. In the training data preparation stage, the training data were prepared by extracting the skin sample data from the skin image analysis result. And in the artificial neural network training stage, an artificial neural network AnnSampleSkin that intelligently predicts the skin image type using this training data was built up, and the model was completed through training. In the skin image identification step, skin samples are extracted from images collected from social media, and the image type prediction results of the trained artificial neural network AnnSampleSkin are integrated to intelligently identify the final skin image type. The skin image identification method proposed in this paper shows explain high skin image identification accuracy of about 92% or more, and can provide standardized skin sample image big data. The extracted skin sample set is expected to be used as standardized skin image data that is very efficient and useful for diagnosing and managing skin conditions.

Optimized Implementation of Block Cipher PIPO in Parallel-Way on 64-bit ARM Processors (64-bit ARM 프로세서 상에서의 블록암호 PIPO 병렬 최적 구현)

  • Eum, Si Woo;Kwon, Hyeok Dong;Kim, Hyun Jun;Jang, Kyoung Bae;Kim, Hyun Ji;Park, Jae Hoon;Song, Gyeung Ju;Sim, Min Joo;Seo, Hwa Jeong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.8
    • /
    • pp.223-230
    • /
    • 2021
  • The lightweight block cipher PIPO announced at ICISC'20 has been effectively implemented by applying the bit slice technique. In this paper, we propose a parallel optimal implementation of PIPO for ARM processors. The proposed implementation enables parallel encryption of 8-plaintexts and 16-plaintexts. The implementation targets the A10x fusion processor. On the target processor, the existing reference PIPO code has performance of 34.6 cpb and 44.7 cpb in 64/128 and 64/256 standards. Among the proposed methods, the general implementation has a performance of 12.0 cpb and 15.6 cpb in the 8-plaintexts 64/128 and 64/256 standards, and 6.3 cpb and 8.1 cpb in the 16-plaintexts 64/128 and 64/256 standards. Compared to the existing reference code implementation, the 8-plaintexts parallel implementation for each standard has about 65.3%, 66.4%, and the 16-plaintexts parallel implementation, about 81.8%, and 82.1% better performance. The register minimum alignment implementation shows performance of 8.2 cpb and 10.2 cpb in the 8-plaintexts 64/128 and 64/256 specifications, and 3.9 cpb and 4.8 cpb in the 16-plaintexts 64/128 and 64/256 specifications. Compared to the existing reference code implementation, the 8-plaintexts parallel implementation has improved performance by about 76.3% and 77.2%, and the 16-plaintext parallel implementation is about 88.7% and 89.3% higher for each standard.

The Validity Test of Statistical Matching Simulation Using the Data of Korea Venture Firms and Korea Innovation Survey (벤처기업정밀실태조사와 한국기업혁신조사 데이터를 활용한 통계적 매칭의 타당성 검증)

  • An, Kyungmin;Lee, Young-Chan
    • Knowledge Management Research
    • /
    • v.24 no.1
    • /
    • pp.245-271
    • /
    • 2023
  • The change to the data economy requires a new analysis beyond ordinary research in the management field. Data matching refers to a technique or processing method that combines data sets collected from different samples with the same population. In this study, statistical matching was performed using random hotdeck and Mahalanobis distance functions using 2020 Survey of Korea Venture Firms and 2020 Korea Innovation Survey datas. Among the variables used for statistical matching simulation, the industry and the number of workers were set to be completely consistent, and region, business power, listed market, and sales were set as common variables. Simulation verification was confirmed by mean test and kernel density. As a result of the analysis, it was confirmed that statistical matching was appropriate because there was a difference in the average test, but a similar pattern was shown in the kernel density. This result attempted to expand the spectrum of the research method by experimenting with a data matching research methodology that has not been sufficiently attempted in the management field, and suggests implications in terms of data utilization and diversity.