• Title/Summary/Keyword: Processes of interaction

Search Result 816, Processing Time 0.025 seconds

Numerical Study on Structure and Pollutant Formation for Syngas Turbulent Nonpremixed Swirling Flames (석탄가스 선회난류 비예혼합 화염장의 화염구조 및 NOx 배출특성 해석)

  • Lee, Jeong-Won;Kang, Sung-Mo;Kim, Yong-Mo;Joo, Yong-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.10-17
    • /
    • 2009
  • The present study numerically investigate the effects of the Syngas chemical kinetics on the basic flame properties and the structure of the Syngas nonpremixed flames. In order to realistically represent the turbulencechemistry interaction and the spatial inhomogeneity of scalar dissipation rate, the Eulerian Particle Flamelet Model (EPFM) with multiple flamelets has been applied to simulate the combustion processes and NOx formation in the syngas turbulent nonpremixed flames. Validation cases include the Syngas turbulent nonpremixed jet and swirling flames. Based on numerical results, the detailed discussion has been made for the effects of the chemical kinetics, the flame structure, and NOx formation characteristics in the turbulent Syngas nonpremixed flames.

  • PDF

Quality and Productivity Improvement by Clustering Product Database Information in Semiconductor Testing Floor

  • Lim, Ik-Sung;Koo, Il-Sup;Kim, Tae-Sung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.73-81
    • /
    • 2000
  • The testing processes for VLSI finished devices are considerably complex because they require different types of ATE to be linked together. Due to the interaction effect between two or more linked ATEs, it is difficult to trace down the cause of the unexpected longer ATE setup time and random yields, which frequently occur in the VLSI circuit-testing laboratory. The goal of this paper is to develop and demonstrate the methodology designed to eliminate the possible interaction factors that might affect the random yields and/or unexpected longer setup time as well as increase the productivity. The statistical method such as design of experiment or multivariate analysis cannot be applied to the final testing floor here directly due to the environmental constraints. Expanded product data information (PDI) is constructed by combining product data information and ATE control information. An architecture utilizing expanded PDI is designed, which enables the engineer to conduct statistical approach investigation and reduce the setup time, as well as increase yield.

  • PDF

CAE of Sheet Metal Forming Processes - The Present Status and The Future Prospect (박판성형에서의 CAE - 현황과 전망)

  • 양동열
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.06a
    • /
    • pp.25-36
    • /
    • 1994
  • The sheet metal forming process is one of the most important manufacturing processes in the modern industry. From the view point of mechanics involved, it is very difficult to predict whether a newly designed sheet metal part can be formed without defects such as fracture, wrinkling and surface unevenness, etc. In order to reduce the effort taken in the trial-and-error process and to control the process effectively, a systematic method for process modeling is to required. The aim of sheet forming simulation through the process modeling is to reduce the lead time for die disign and manufacture by process modeling is to reduce the lead time for die design and manufacture by means of investigating the deformation mechanics and the mutual interaction between the process parameters. In this paper, the necessity, the present status, and the future technology about CAE of sheet forming simulation have been discussed.

Adaptive Intelligent Control of Nonlinear dynamic system Using Immune Fuzzy Fusion

  • Kim, Dong-Hwa;Park, Jin-Ill
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.146-156
    • /
    • 2003
  • Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems. However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control system inverted pendulum, through computer simulation. This paper defines relationship state variables $x,\dot{x},{\theta},\dot{\theta}$ using immune fuzzy and applied its results to stability.

TRANSIENT FLAMELET MODELING FOR COMBUSTION PROCESSES OF HSDI DIESEL ENGINES

  • Kim, H.J.;Kang, S.M.;Kim, Y.M.;Lee, J.H.;Lee, J.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.129-137
    • /
    • 2006
  • The representative interactive flamelet(RIF) concept has been applied to numerically simulate the combustion processes and pollutant formation in the HSDI diesel engine. In order to account for the spatial inhomogeneity of the scalar dissipation rate, the eulerian particle flamelet model using the multiple flamelets has been employed. The vaporization effects on turbulence-chemistry interaction are included in the present RIF procedure. the results of numerical modeling using the rif concept are compared with experimental data and with numerical results of the widely-used ad-hoc combustion model. Numerical results indicate that the rif approach including the vaporization effect on turbulent spray combustion process successfully predicts the ignition delay characteristics as well as the pollutant formation in the HSDI diesel engines.

Integrative understanding of immune-metabolic interaction

  • Im, Seonyoung;Kim, Hawon;Jeong, Myunghyun;Yang, Hyeon;Hong, Jun Young
    • BMB Reports
    • /
    • v.55 no.6
    • /
    • pp.259-266
    • /
    • 2022
  • Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.

Processes in Peer conflicts of Two-Year-Olds: Disputes over Objects (대물 다툼 상황에서 2세아의 또래 갈등 과정 분석)

  • Lee, Kang Yi;Yi, Soon Hyung
    • Korean Journal of Child Studies
    • /
    • v.20 no.1
    • /
    • pp.79-97
    • /
    • 1999
  • This study investigated interactions of two-year-old toddlers in peer conflicts caused by disputes over objects. Thirty pairs of same-gender peers were recruited from 10 child care centers. The age of these toddlers ranged from 24 to 36 months. The data were collected by experimental observation. The interaction processes between the pairs of subjects were recorded by video camera. 24 pairs displayed peer conflict over objects. The data were analyzed qualitatively and quantitatively employing content analysis and the SPSSW in 6.0. Major findings showed that when the toddler was in conflict with a peer for toys, (1) he or she interacted actively with the other child, employing both non-verbal and verbal strategies to resolve the conflict; (2) behaviors and statements reflected an egocentric tendency; (3) they recognized ownership of toys; and (4) he or she employed some prosocial strategies which could provide a basis for developing social skills in a conflict situations with peers.

  • PDF

Laminar Flamelet Modeling of Combustion Processes and NO Formation in Nonpremixed Turbulent Jet Flames (Laminar Flamelet Model을 이용한 비예혼합 난류제트화염의 연소과정 및 NO 생성 해석)

  • Kim, Seong-Ku;Kim, Hoo-Joong;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.51-62
    • /
    • 1999
  • NOx formation in turbulent flames is strongly coupled with temperature, superequilibrium concentration of O radical, and residence time. This implies that in order to accurately predict NO level, it is necessary to develop sophisticated models able to account for the complex turbulent combustion processes including turbulence/chemistry interaction and radiative heat transfer. The present study numerically investigates the turbulent nonpremixed hydrogen jet flames using the laminar flamelet model. Flamelet library is constructed by solving the modified Peters equations and the turbulent combustion model is extended to nonadiabatic flame by introducing the enthalpy defect. The effects of turbulent fluctuation are taken into account by the presumed joint PDFs for mixture fraction, scalar dissipation rate, and enthalpy defect. The predictive capability of the present model has been validated against the detailed experimental data. Effects of nonequilibrium chemistry and radiative heat loss on the thermal NO formation are discussed in detail.

  • PDF

Aggregation Processes of a Weak Polyelectrolyte, Poly(allylamine) Hydrochloride

  • Park, Jae-Jung;Choi, Young-Wook;Kim, Kyung-Bae;Chung, Hoe-Il;Sohn, Dae-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.104-110
    • /
    • 2008
  • Poly(allylamine) hydrochloride is a weak cationic polyelectrolyte that exhibits different aggregation properties at different solution pH values and aging times. Specifically, after several days aging in a pH 3 buffer, less than 1 mg/mL poly(allylamine) hydrochloride became turbid, and the hydrodynamic radius increased with a single diffusion mode. However, the hydrodynamic radius did not change at high concentrations. The dynamic processes of polymer aggregations at different pH values were verified by a light scattering and zeta-potential apparatus. The major interaction was caused by the capturing of counterions by the polyelectrolyte, which generates electrostatic, hydrophobic and cation-p interactions.

Multi-environment PDF Modeling for MILD Combustion Processes (Multi-environment PDF 모델을 이용한 MILD 연소과정 해석)

  • Ji, Hyunggeun;Jeon, Sangtae;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.43-50
    • /
    • 2017
  • In this study, the multi-environment probability density function(MEPDF) approach has been applied to numerically investigate Delft-Jet-in-Hot-Coflow(DJHC) turbulent flames under Moderate or Intense Low-oxygen Dilution (MILD) combustion condition. Computations are made for two different jet velocities(Re = 4100 and 8800). In terms of mean axial velocity, temperature, and turbulent kinetic energy, numerical results are in reasonably good agreements with experimental data even if there exist the noticeable deviations in downstream region. Based on numerical results, the detailed discussions are made for the essential features of the non-visible flame structure and MILD combustion processes.