Browse > Article
http://dx.doi.org/10.5483/BMBRep.2022.55.6.064

Integrative understanding of immune-metabolic interaction  

Im, Seonyoung (Department of Systems Biology, Yonsei University)
Kim, Hawon (Department of Systems Biology, Yonsei University)
Jeong, Myunghyun (Department of Systems Biology, Yonsei University)
Yang, Hyeon (Department of Systems Biology, Yonsei University)
Hong, Jun Young (Department of Systems Biology, Yonsei University)
Publication Information
BMB Reports / v.55, no.6, 2022 , pp. 259-266 More about this Journal
Abstract
Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.
Keywords
Immunity; Immunometabolism; Inflammation; Metabolism; Stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454, 428-435   DOI
2 Medzhitov R (2021) The spectrum of inflammatory responses. Science 374, 1070-1075   DOI
3 Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ and Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466-470   DOI
4 Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666   DOI
5 Duewell P, Kono H, Rayner KJ et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361   DOI
6 Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847-856   DOI
7 Kotas ME and Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160, 816-827   DOI
8 Van den Bossche J, Baardman J and de Winther MP (2015) Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. J Vis Exp 105, 53424
9 Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12, 325-338   DOI
10 Su X, Yu Y, Zhong Y et al (2015) Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 16, 838-849   DOI
11 Loftus RM and Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291, 1-10   DOI
12 Dror E, Dalmas E, Meier DT et al (2017) Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 18, 283-292   DOI
13 Tannahill GM, Curtis AM, Adamik J et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238-242   DOI
14 Burke JD, Platanias LC and Fish EN (2014) Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol 88, 3485-3495   DOI
15 Jessop F, Buntyn R, Schwarz B, Wehrly T, Scott D and Bosio CM (2020) Interferon gamma reprograms host mitochondrial metabolism through inhibition of complex II to control intracellular bacterial replication. Infect Immun 88, e00744-19
16 Tan Z, Xie N, Cui H et al (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 194, 6082-6089   DOI
17 York AG, Williams KJ, Argus JP et al (2015) Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716-1729   DOI
18 Feingold KR, Shigenaga JK, Kazemi MR et al (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92, 829-839   DOI
19 Rodriguez-Prados JC, Traves PG, Cuenca J et al (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185, 605-614   DOI
20 Huang SC, Smith AM, Everts B et al (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817-830   DOI
21 Fultang L, Gamble LD, Gneo L et al (2019) macrophage-derived IL1β and TNFα regulate arginine metabolism in neuroblastoma. Cancer Res 79, 611-624   DOI
22 Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y and Tanti JF (2007) Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241-251   DOI
23 Hotamisligil GS, Arner P, Caro JF, Atkinson RL and Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95, 2409-2415   DOI
24 Wieser V, Adolph TE, Grander C et al (2018) Adipose type I interferon signalling protects against metabolic dysfunction. Gut 67, 157-165   DOI
25 Xu T, Stewart KM, Wang X et al (2017) Metabolic control of T(H)17 and induced T(reg) cell balance by an epigenetic mechanism. Nature 548, 228-233   DOI
26 Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H and Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A 107, 7817-7822   DOI
27 Fox CJ, Hammerman PS and Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5, 844-852   DOI
28 Rathmell JC, Farkash EA, Gao W and Thompson CB (2001) IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167, 6869-6876   DOI
29 Wu D, Sanin DE, Everts B et al (2016) Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44, 1325-1336   DOI
30 Senn JJ, Klover PJ, Nowak IA and Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391-3399   DOI
31 Li C, Wang G, Sivasami P et al (2021) Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab 33, 1610-1623.e1615   DOI
32 Nobs SP, Natali S, Pohlmeier L et al (2017) PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J Exp Med 214, 3015-3035   DOI
33 Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM and Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14, 500-508   DOI
34 Glick GD, Rossignol R, Lyssiotis CA et al (2014) Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J Pharmacol Exp Ther 351, 298-307   DOI
35 Pearce EL and Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633-643   DOI
36 Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882   DOI
37 Gagliani N, Amezcua Vesely MC, Iseppon A et al (2015) Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221-225   DOI
38 Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559-563   DOI
39 Weisel FJ, Mullett SJ, Elsner RA et al (2020) Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat Immunol 21, 331-342   DOI
40 Lee MW, Odegaard JI, Mukundan L et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74-87   DOI
41 Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186, 3299-3303   DOI
42 Hu B, Jin C, Zeng X et al (2020) γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610-614   DOI
43 Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15, 930-939   DOI
44 Zuniga LA, Shen WJ, Joyce-Shaikh B et al (2010) IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185, 6947-6959   DOI
45 Medrikova D, Sijmonsma TP, Sowodniok K et al (2015) Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS One 10, e0118534   DOI
46 Kalin S, Becker M, Ott VB et al (2017) A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metab 26, 475-492.e477   DOI
47 Fang W, Deng Z, Benadjaoud F, Yang D, Yang C and Shi GP (2020) Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J 34, 9755-9770   DOI
48 Vats D, Mukundan L, Odegaard JI et al (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4, 13-24   DOI
49 Zhang J, Muri J, Fitzgerald G et al (2020) Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab 31, 1136-1153.e1137   DOI
50 Bruce CR and Dyck DJ (2004) Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 287, E616-E621   DOI
51 Michelucci A, Cordes T, Ghelfi J et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110, 7820-7825   DOI
52 Lampropoulou V, Sergushichev A, Bambouskova M et al (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24, 158-166   DOI
53 Jha AK, Huang SC, Sergushichev A et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430   DOI
54 Mills EL, Ryan DG, Prag HA et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113-117   DOI
55 Lunt SY and Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441-464   DOI
56 Bambouskova M, Gorvel L, Lampropoulou V et al (2018) Electrophilic properties of itaconate and derivatives regulate the IκBξ-ATF3 inflammatory axis. Nature 556, 501-504   DOI
57 Chapman NM and Chi H (2018) Hallmarks of T-cell exit from quiescence. Cancer Immunol Res 6, 502-508   DOI
58 Meiser J, Kramer L, Sapcariu SC et al (2016) Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem 291, 3932- 3946   DOI
59 Chovatiya R and Medzhitov R (2014) Stress, inflammation, and defense of homeostasis. Mol Cell 54, 281-288   DOI
60 Zhang S, Zhang X, Wang K et al (2018) Newly generated CD4(+) T cells acquire metabolic quiescence after thymic egress. J Immunol 200, 1064-1077   DOI
61 Miller ML, Mashayekhi M, Chen L et al (2014) Basal NF-κB controls IL-7 responsiveness of quiescent naive T cells. Proc Natl Acad Sci U S A 111, 7397-7402   DOI
62 Uysal KT, Wiesbrock SM, Marino MW and Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610-614   DOI
63 Lagathu C, Yvan-Charvet L, Bastard JP et al (2006) Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162-2173   DOI
64 Ahmed M and Gaffen SL (2013) IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Kruppel-like factors. Cytokine 61, 898-905   DOI
65 Kohlgruber AC, Gal-Oz ST, LaMarche NM et al (2018) γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol 19, 464-474   DOI
66 Gao D, Madi M, Ding C et al (2014) Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 307, E289-E304   DOI
67 Kim H-J, Higashimori T, Park SY et al (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060-1067   DOI
68 Cai D, Yuan M, Frantz DF et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11, 183-190   DOI
69 Hotamisligil GS, Shargill NS and Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91   DOI
70 Bouhlel MA, Derudas B, Rigamonti E et al (2007) PPAR-gamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6, 137-143   DOI
71 Kang K, Reilly SM, Karabacak V et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab 7, 485-495   DOI
72 Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A et al (2008) Alternative M2 activation of kupffer cells by PPARδ Ameliorates obesity-induced insulin resistance. Cell Metab 7, 496-507   DOI
73 Haniuda K, Fukao S and Kitamura D (2020) Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling. Cell Rep 33, 108333   DOI
74 Swamy M, Pathak S, Grzes KM et al (2016) Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol 17, 712-720   DOI
75 Roh JS and Sohn DH (2018) damage-associated molecular patterns in inflammatory diseases. Immune Netw 18, e27   DOI
76 Keestra-Gounder AM, Byndloss MX, Seyffert N et al (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397   DOI
77 Yabal M, Calleja DJ, Simpson DS and Lawlor KE (2019) Stressing out the mitochondria: mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol 105, 377-399   DOI
78 Liu L, Lu Y, Martinez J et al (2016) Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci U S A 113, 1564-1569   DOI
79 Lochner M, Berod L and Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36, 81-91   DOI
80 Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251   DOI
81 Nagy E, Henics T, Eckert M, Miseta A, Lightowlers RN and Kellermayer M (2000) Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275, 253-260   DOI
82 Boukouris AE, Zervopoulos SD and Michelakis ED (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci 41, 712-730   DOI
83 Knudsen NH, Stanya KJ, Hyde AL et al (2020) Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368, eaat3987   DOI
84 Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI et al (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 107, 22617-22622   DOI
85 Tsao CH, Shiau MY, Chuang PH, Chang YH and Hwang J (2014) Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 55, 385-397   DOI
86 Brestoff JR, Kim BS, Saenz SA et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242-246   DOI
87 Schenk U, Frascoli M, Proietti M et al (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4, ra12   DOI
88 Gerriets VA, Kishton RJ, Nichols AG et al (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125, 194-207   DOI
89 Shi LZ, Wang R, Huang G et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367-1376   DOI
90 Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20, 1327-1333   DOI
91 Shi W, Zhu Q, Gu J et al (2013) Anti-IL-17 antibody improves hepatic steatosis by suppressing interleukin-17-related fatty acid synthesis and metabolism. Clin Dev Immunol 2013, 253046   DOI