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Abstract

Nonlinear dynamic system exist widely in many types of systems such as chemical processes, biomedical processes, and the main steam
temperature control system of the thermal power plant. Up to the present time, PID Controllers have been used to operate these systems.
However, it is very difficult to achieve an optimal PID gain with no experience, because of the interaction between loops and gain of the PID

controller has to be manually tuned by trial and error. This paper suggests control approaches by immune fuzzy for the nonlinear control
system inverted pendulum, through computer simulation. This paper defines relationship state variables x,#,8,6 using immune fuzzy

and applied its results to stability.
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L. Introduction

The Proportional-Integral-Derivative (PID) controller has
been widely used owing to its simplicity and robustness in
chemical process, power plant, and electrical systems [1]-[7].
Its popularity is also due to easy implementation in hardware
and software. However, with only the P, I, D parameters, it can
not effectively control a plant with complex dynamics, such as
large dead time, inverse response, and highly nonlinear
characteristics in power plants [4]-[5). When using a PID
controller in these plants, the plant is generally controlled
without consideration of disturbance rejection. Therefore, an
industrial experience is required for higher automatic tuning;
the PID controller is usually poorly tuned in practice [4].
Traditionally, PID controllers applied to these plants are tuned

with a reduction of gain so that overall stability can be obtained.

This results in poor performance of control. That is, the process
with large dead time such as steam temperature process of a
power plant is usually difficult to be controlled without a
highly experience tuning [3][ 7].

Failure to tune in control will cause an inevitable plant
shutdown, and a loss of production and considerable damage to
the plant may result. An effective tuning is required to maintain
the system reliability and stability following a system
disturbance [3][7]. However, any new theory should be proven
on the physical plant or equipment before being used on the
real plant to ensure safety and reliability.

It is a challenge in controller tuning technologies to explore
novel control strategies and philosophies for complex industrial
processes [S][7]. The application of intelligent system
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technologies in industrial control has been developing into an
emerging technology, so-called ‘Industrial intelligent control
[9]-[16]. This technology is highly multi-disciplinary and
rooted in systems control, operations research, artificial
intelligence, information and signal processing, computer
software and production background {14].

Chronologically, fuzzy logic was the first technique of
intelligent systems. Neural, neuro-fuzzy and evolutionary
system and their derivatives followed later [10]. Each
technique is offering new possibilities and making intelligent
system even more versatile and applicable in an ever-
increasing range of industrial applications [16]-[17].

On the other hand, biological information processing
systems such as human beings have many interesting functions
and are expected to provide various feasible ideas to
engineering fields, especially intelligent control or robotics
[21], [39]. Biological information in living organisms can be
mainly classified into the following four systems: brain
nervous, genetic system, endocrine system, and immune
system [26]-[32]. Among these systems, brain nervous and
genetic systems have already been applied to engineering fields
by modeling as neural network and genetic algorithms [37].
However, only a little attention has been paid to application of
the other system such as immune algorithm in engineering, not
to mention their important characteristics and model.

The artificial immune system (AIS) implements a learning
technique inspired by the human immune system which is a
remarkable natural defense mechanism that learns about
foreign substances, However, the immune system has not
attracted the same kind of interest from the computing field as
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the neural operation of the brain or the evolutionary forces used
in learning classifier systems [34]-[38].

The immune system is a rich source of theories and as such
can act as an inspiration for computer-based solutions. Other
areas of the interest relating to the characteristics of the
immune system are listed below [17]-[41]:

@ The learning rule of the immune system is a distributed
system with no central controller, since the immune system is
distributed and consists of an enormous number and diversity
of cells throughout our bodies.

@ The immune system has a naturally occurring event-
response system which can quickly adapt to changing
situations and shares the property with the central nervous
system that a definite recognition can made be made with a
fuzzy stimulus.

@ The immune system possesses a self org#nizing and
distributed memory. Therefore, it is thus adaptive to its
external environment and allows a PDP (parallel distributed
processing) network to complete patterns against the
environmental situation.

@ The correct functioning of the immune system is to be
insensitive to the fine details of the network connections, since
a significant part of the immune system repertoire is generate
by somatic mutation processes.

In particular, immune system has various interesting features
such as immunological memory, immunological tolerance, so
on viewed from engineering. That is, it can play an important
role to maintain own system dynamically changing environ-
ments. Therefore, immune system would be expected to
provide a new paradigm suitable for dynamic problem dealing
with unknown environments their rather than static system.

Brooks, a pioneer of the approaches, has presented
subsumption architecture for behavior arbitration of
autonomous robots [21], [39]. He has argued that intelligence
should emerge from mutual interactions among competence
modules (i.e. simple behavior/ action), and interactions
between a robot and its environment. However, the behavior
based Al still has the following open questions: how do we
construct an appropriate arbitration mechanism among multiple
competence modules, how do we prepare appropriate
competence modules.

Among AIS, we particularly focus on the immune system,
since it has various interesting features such as immunological
memory, immunological tolerance, pattern recognition, and so
on viewed from an engineering standpoint [38], [43], [49].
Therefore, it can play important roles to maintain its own
system against dynamically changing environments and would
be expected to provide a new methodology suitable for
dynamic problems dealing with unknown hostile environments
rather than static problems through the interaction among
lymphocytes and/or antibodies.

From the above facts, some researchers [39], [46]
particularly focused on the similarities between the behavior
arbitration system and the immune system, and have proposed
a new decentralized consensus-making system inspired by the
biological immune system in engineering [26], [43].

This paper suggests control scheme to control effectively
non-linear system using immune algorithm based fuzzy. The
variation of affinity decided between initial value and present
value of position in the pendulum with cart is applied to
improve control performance.

I1. Dynamic model of immune system

A. The Response Of Immune System

The immune system has two types of response: primary and
secondary. The primary response is reaction when the immune
system encounters the antigen for the first time. At this point
the immune system learns about the antigen, thus preparing the
body for any further invasion from that antigen. This learning
mechanism creates the immune system’s memory. The
secondary response occurs when the same antigen encountered
again. This has response characterized by a more rapid and
more abundant production of antibody resulting from the
priming of the B-cells (B-lymphocytes) in the primary response.
When a naive B-cell encounters an antigen molecule through
its receptor, the cell gets activated and begins to divide rapidly;
the progeny derived from these B-cells differentiate into
memory B-cells and effector B-cells or plasma cells. The
memory B-cells have a long life span and they continue to
express membrane bound antibody with the same specificity as
the origin parent B-cell [18]-[31].

B. Antibodies In Immune System

The antibody molecule acts as a bridge between cytotoxic
cell and the target cell, subsequently causing the target cell due
to activation of cytotoxic cell through receptor. Antibody is
actually three-dimensional Y shaped molecules which consist
of two types of protein chain: light and heavy. It also possesses
two paratopes which represents the pattern it will use to match
the antigen. The regions on the molecules that the paratopes
can attach are so-called epitopes. These same molecules with
antigenic peptide bound to them will be responsible for
interaction with T-cell receptor. The site on an antigenic
peptide that interacts with a T-cell receptor is called epitode
[18], [33].

C. Interaction Between Antibodies

The antigen antibody interaction is similar to that of enzyme
substrate interaction except that this interaction does not lead to
irreversible alteraction either in antibody or antigen and
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Fig. 1. Relationship between antibody and antigen on
immune network.

therefore reversible. The reaction between an antigen antibody
is of noncovalent type, where the antigenic determinants or
epitodes interact with domain of the antibody molecule. The
noncovalent interaction between antigen and antibody is
brought about by hydrogen bonds, vander Waals interactions,
ionic bonds and hydrophobic interactions. Therefore, a strong
affinity interaction should occur between antigen and antibody
to form a stable complex [12). In Fig. 2, Describing the
interaction among antibodies is important to understand
dynamic characteristics of immune system. These antigens
stimulate the antibodies, consequently the concentration of
antibody Al and A2 increases. However, if there is no
interaction between antibody Al and antibody A2, these
antibodies will have the same concentrations. Suppose that the
idiotope of antibody Al and the paratope of antibody A2 are
the same. This means that antibody A2 is stimulated by
antibody Al, and oppositely antibody Al is suppressed by
antibody A2 as Fig. 2. In this case, unlike the previous case,
antibody A2 will have higher concentration than antibody Al.
As a result, antibody A2 is more likely to be selected.

This means that antibody A2 has higher priority over
antibody Al in this situation [18], [25], [37].

D. Dynamics Of Immune System

In the immune system, the level to which a B cell is
stimulated relates partly to how well its antibody binds the
antigen. We take into account both the strength of the match
between the antibody and the antigen and the B cell object’s
affinity to the other B cells as well as its enmity. Therefore,
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generally the concentration of i-# antibody, which is denoted
by & ; » is calculated as follows [21], [24], [31]:

adms, \

det(t) j=1 5, (1a)
——ai my 8, () + Bm; -7, )
k=1

d5,(t) _ 1
dt 1+exl{0.5 as; (')D

where in Eq. (3), N
B are positive constants. m ji denotes affinities between

(1b)

is the number of antibodies, and & and

antibody j and antibody i (i.e. the degree of interaction),
m, represents affinities between the detected antigens and
antibody i, respectively.

On the other hand, information obtained in lymphocyte
population can be represented by [17]:

S
Q,(N)= 'Z _xij logxl.j , )

i=1
where N is the size of the antibodies in a lymphocyte
has the
probability that locus j is allele i. Therefore, thg means of
information 2 ave(N ) in a lymphocyte population is

obtained as the following equation [17], [39]:

population, S is the variety of allele and X

Q. (N)= —Z Q,(N)

]-1

Z ( , 3

12X - X, logx

Ali=1 Il
where M is the size of the gene in an antibody.
The affinity My between antibody ¢ and antibody f§ is
given as follows:

M

1
" T 1 Q@p))” @

Q@B)=H,(0)=[fi()+ f,(0)+ ()]

where Q(af) is an information which obtained by antibody
¢ and antibody 8 . If Q(af) =0, the antibody o and
antibody 8 match completely. Generally m, . 1S given by
range of 0-1.
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I11. Controller design of non-linear system using
immune fuzzy fusion

A. Sugeno Fuzzy Logic
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Fig. 2. Sugeno fuzzy model.

Takagi, Sugeno, and Kang proposed the Sugeno fuzzy model
[10] in an effort to develop a systematic approach to generating
fuzzy rules from a given input-output data set. A typical fuzzy
rule in that fuzzy model has the form

IfxisAandy is B then z=f{x, y), (5)

where A and B are fuzzy sets in the antecedent, while z=f(x, y)
is a crisp function in the consequent.

f(x, y) is a polynomial in the input variables x and y. When f{x,
y) is a first order polynomial, the resulting fuzzy inference
system is called a first-order Sugeno fuzzy model. Fig. 2
represents the fuzzy reasoning procedure for a first-order
Sugeno fuzzy model. Since each rule has a crisp output, the

overall output is obtained by weighted average as Fig. 2.

B. Cart with Inverted Pendulum

Set position

Fig. 3. The structure of cart with inverted pendulum.

To demonstrate the availability, this paper takes an inverted
pendulum system for simulation. The inverted pendulum
system is composed of a rigid pole and a cart on which the pole
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Fig. 4. Expression of resolution, depending on¢t .

is hinged as shown in Fig. 3. The cart can move on the rail
tracks to its right or left, depending on the force exerted on the
cart. Therefore, it is a classical non-linear control problem that
can be explained as the task of balancing a pole on a movable
cart. The pole is hinged to the cart through a frictionless free
joint such that it has only one degree of freedom. The control
target is to balance the pole starting from nonzero conditions
by supplying appropriate force to the cart. The dynamics of the
inverted pendulum system are characterized by four state
variables: 8 (angle of the pole with respect to the vertical axis),
8 (angular velocity of the pole), x (position of the cart on the
track), x (velocity of the cart). The behavior of these four state
variables can be expressed by the following two second-order
differential equations [51]:

F+ mpl{ézsine -0 cosG]-I

= 1, ()
me+m,

. —F—mplézsin61
gsinB + cosf ——l
G me +m, |

where, I is the half length of the pole(=0.5m), m is the mass
of the pole (=0.1 kg), M is the mass of the cart (=1.0kg).
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Fig. 5. Feedback of optimal solution to memory cell.

C. Non-linear Controller Design Using Immune-Fuzzy
Fusion

This paper expresses the distance between the target position
(B) and the initial position (A) as « , and a resolution is
regulated by:

min(A,B)+(max(A’ Pomnt B)Gx(i—l) <l
|di| < minca, B)+ ( max(A, B); min(A, B) I\x il ®)

£

i=a,aa-1La-2,---1.

Where, d; is the present position of the given cart. The
antibody in immune network is produced as much as the
number of the resolution, o .

The performance definition for error is given by

n

ei:I t(xc2+92)dt,i=a,a—l,---,1. ©)
=1

Where, n is time from present position to target
position, xc is givenasxc=a-b.
Fuzzy output for each partition is depicted as:

f,J =w, ;X fji=a,a-11. j=anumber of fuzzy rule.

10)

i j1 2 3 4 14 15 16¢
1 (™ M2 (M3 |ma

o0 00 [M14 |M15 W6 |a

wai|w22|wa3|{w2,4] ® © @ @ |w14 |W215 |W216]e2

o e o0 I

W9l |W92 [W93IW94]| @ @ @ @ [M914 {1915 |W916 €9
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Fig. 6. The structure of antibody for memory cell.
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Where w; ; is fuzzy output gain,

fj(j = a number of fuzzy rule.)
on partition i(i =a,a -Lo —2,---,1.) (11

Ifithas 16 rules, jis j=12,3,---,16.

The structure of the antibody for learning is given as Fig. 6.
The affinity between antibody and antigen is decided
bye, ;3.4 and the affinity between antibodies is decided
by ¢; and size of neighbor antibody defined as Equation (11):

[04
. 12
7; PP (12)
o -1, lf € < €41,
FOI= D x5 =30, if € = ey, (13)
i=1 1, l‘f € > €i;1-

Where, the concentration of the total antibody is given by:

¢=in,~/x. (14)

This paper used a simple crossover and mutation as genetic
algorithm.

IV. Simulation and discussions

A. The characteristics for the fixed initial value «
In this
(m;=2kg, 1=05m,m, =0.1kg ) and the initial values for
simulation are 8 =0.1rd, x=0.5m. The final position is
x=0 and partition for deciding affinity is selected by

-0.3<68<0.3,

~1<8< 1,

-3<x<3

paper, we used the pendulum with cart

-6<x<6.
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Fig. 9. 6(t) input membership functions.
Fig. 8. Simulation structure for the immune algorithm-fuzzy

model. .

1 fmp=a L _jipa= ]

o

o

Fig. 7 shows learning algorithm by immune algorithm and

0

fuzzy logic. Fig. 7(a) is leaning method when the value of &

o

membership degree

o

is constant and Fig. 7(b) is flowchart when the value of @ is
variable. Fig. 8. is simulation block diagram for the immune

algorithm-fuzzy model by Simulink. The membership function

o
o'ct) input

Fig. 10. 6(1) input membership functions.

for parameters of the pendulum is given as Figs 9-12.
Fuzzy rule for Sugeno fuggy logic is defined by 8-rules as the
Table 1.[1]
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Table 3. The data onax =10.

w W2l W Wqg | Ws | W | W7 | W8 €

1 |1.5573(1.337811.8236(1.9768|1.2524{0.4730{0.7890j0.5098]2565.1

2 11.4217]1.4463|1.9638|1.9708{1.0641| 1.741 {1.8501{0.3886{22.515

-3 -2 l]‘,l 2 3
>(t) Input
Fig. 11. x(¢) membership functions. 9 11.9562|1.6739(0.4960]0.6976{0.6808| 1.652 [0.7104;0.1879/2.8855

10]0.6437|1.2815|1.5168|1.5599{0.8642(1.6509]0.9751{0.5104{7.0122

@ :3.2245

Table 4. The dataon o =20.

w Wy | W3 Wg | Ws W | W7 | W8 €

|
m
'
b
N
N
b
)

1.3637|1.3506{1.9641[1.9977[0.5965{1.1083(0.5674/1.3617|2404.2

Q
x'Ct) input

Fig. 12. x(t) input membership functions.

2 [1.4226(1.4286(1.9488|1.9476{1.0436]1.7317]1.8966|0.3320(10.519

Fig. 13 is the response of x(t), x’(t) of fuzzy controller on initial :
value 8 = 0.1, x=0.5 when set-point is moving from x=0 to 0 6.5374

' 1911.5253]0.9494{1.1296]{0.8922]0.5828[1.1661{1.2184{0.9951
and Fig. 14 represents the response of 8(f), 8 x(t) of fuzzy -005
controller on the same initial value (8 = 0.1, x=0.5) and the 20{1.5253[0.9494|1.1296{0.8922/0.5828|1.1661|1.2184/0.9951 z_lg(f’;
same set-point (x=0 to 0..?'). @ - 24797
Tables 2- 4 are data for Figs. 13-14.
Table 1. Fuzzy rules. A. The characteristics for the variable initial value &
x pos pos i -
Fig. 13. x(t), x’(t) response of fuzzy controller on initial value
7] )5 X neg pos 6 = 0.1, x=0.5 when set-point is moving from x=0 to 0.5.
neg neg .fl f2 Response to the set-point x = 1
------------------- SRR Y2
H initial &= 0.1 rd
neg pos g Ja nelx=08m __lg 4
Set:pogiti
pos neg fs fs B R e R ) 02 4
e R 0 £
pos pos fr N £ T Z'§
z SR R S 0.2 ;E
......................... ,04 3
Table 2. Dataon a =5.
-------------- 06
W[ wy | w3 wq | W5 | We | W7 | WR |G .
; i ! i 0.8
10 15 20 25 30
1 /1.7092[1.1366(1.8172(1.8651|0.9971|0.3958/0.425210.1375[2747.3 Time

Fig. 13. x(1), x (t) response of fuzzy controller on initial

value @ = 0.1, x=0.5 when set-point is moving from x=0 to
3 10.2030/0.6786/0.0061]0.7707|0.0365]0.3096|1.9885{0.4221(4.2395 0.5.

2 11.6256/1.3709| 1.864 {1.8614(1.1668| 1.67 |1.7432}0.2961/22.206

4 10.9361(0.4963{1.2069]0.4873]0.7342]1.9955(1.7916{0.7562(0.6114

5 [1.2857|1.2261{1.9534|1.9603(0.9868|1.743211.8806]0.5040/78.815

@ :5.0299
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Fig. 14. 8(1), 6 ' x(t) response of fuzzy controller on initial
value 6 = 0.1, x=0.5 when set-point is moving from x=0 to
0.5.
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Fig. 15. Response of pendulum position x(#) on set-point x=1
and variation of & by algorithm of Fig. 7(a).

Response x'(t) to the set-point x = 1
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O
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08B
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Fig. 16. Response of pendulum position x’(¢) on set-point
x=1 and variation of & by algorithm of Fig. 7(a).

Fig. 14. 8(1), 9'x(t) response of fuzzy controller on initial
value 8 = 0.1, x=0.5 when set-point is moving from x=0 to
0.5.

Also, Figs. 15-16 illustrate the response of pendulum position
x(t) and x’(t) on set-point x=/ and variation of & by
algorithm of Fig. 7(a). Figs. 17-18 are the response of
pendulum angular 8(tf) and 8 ) by algorithm of Fig. 7(a)
when set-point is x=1 and the value of & varies.

Response 6(t) to the set-point x =1

0.15 : : —
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5 005 |- phoodieencnes .
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u] l—t \\f/‘m« ~ e —
v Y
! : bl !
0.05 [r----edmanenees : it o]
: | ; LT '
t} : : ; U ; :
ol i i i : :
0 5 10 15 20 25 30
Time

Fig. 17. Response of pendulum angular 8(¢) on set-point
x=] and variation of & by algorithm of Fig. 7(a)

Response §'(t) to the set-point x = 1

gy
(==

s = = =]

P R

Angle varigtion in rd/s

1;3 15 20 25 30
Time
Fig. 18. Response of pendulum angular 8 (f) on set-point
x=1 and variation of & by algorithm of Fig. 7(a)

Response x(t) to the set-point x =1
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0.6 -
;

Posttion in m

0.4

D2f-t-merdemennnens boeoneed S REEEEER RO S P TP LR
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0 St - bbbl P---q--- o a=5
H H H c=10
02 i H i 1 0.=20
0 5 10 15 20 25 30
Time

Fig. 19. Response of pendulum position x(¢) on set-point x=/
and variation of & by algorithm of Fig. 7(b).

Figs. 19-22 are the response of pendulum position x(t), x (t)
and pendulum angular 8, 6 by algorithm of Fig. 7(b) when
set-point x=] and variation of & are 1-20. Comparisons of
curves of position x(¢) in Fig. 13, Fig. 15, and Fig. 19 give are
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Fig. 20. Response of pendulum position x (z) on set-point
x=] and variation of & by algorithm of Fig. 7(b).

Response &(t) to the set-point x =1
0.15 T T r

Angle in rd

01 i i i i i
1] 5 10 15 20 25 30
Tune
Fig. 21. Response of pendulum angular 8 on set-point x=1
and variation of @ by algorithm of Fig. 7(b).

Response 6(t) to the set-poirt x = 1

Angle variation in rd/s

o4 | s ; z i
0 5 10 15 20 i} 30

Fig. 22. Response of pendulum angular 6 on set-point x=1
and variation of & by algorithm of Fig. 7(b).

the same results but in Fig. 13, Fig. 16, and Fig. 20, the results

of immune algorithm based control is showing the lower
overshoot. When Fig. 14, Fig. 18, and Fig. 22 is comparing, the
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responses of the immune algorithm based control is the similar
overshoot as that of the fuzzy logic controller. However, in
every Figs, The bigger « , the lower overshoot.

V. Conclusions

This paper suggests control method for non-linear system
such as power plant, chemical plant, inverted pendulum
method using immune algorithm based fuzzy logic. PID
Controllers have been used to operate these systems. However,
it is very difficult to achieve an optimal PID gain with no
experience, because gain of the PID controller has to be
manually tuned by trial and error.

On the other hand, as the artificial immune system (AIS)
implements a learning technique inspired by the human
immune system which is a remarkable natural defense
mechanism that learns about foreign substances, the learning
rule is a distributed system with no central controller.
Therefore, it is thus adaptive to its external environment and
allows a PDP (Parallel Distributed Processing) network to
complete patterns against the environmental situation.

This paper uses an inverted pendulum control problem to
illustrate the efficiency of the proposed method for non-linear
system and defines relationship state variables x,10.8 using
immune fuzzy, through simulation. The results represent
satisfactory response.
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