DOI QR코드

DOI QR Code

Integrative understanding of immune-metabolic interaction

  • Im, Seonyoung (Department of Systems Biology, Yonsei University) ;
  • Kim, Hawon (Department of Systems Biology, Yonsei University) ;
  • Jeong, Myunghyun (Department of Systems Biology, Yonsei University) ;
  • Yang, Hyeon (Department of Systems Biology, Yonsei University) ;
  • Hong, Jun Young (Department of Systems Biology, Yonsei University)
  • Received : 2022.03.11
  • Accepted : 2022.05.17
  • Published : 2022.06.30

Abstract

Recent studies have revealed that the immune system plays a critical role in various physiological processes beyond its classical pathogen control activity. Even under a sterile condition, various cells and tissues can utilize the immune system to meet a specific demand for proper physiological functions. Particularly, a strong link between immunity and metabolism has been identified. Studies have identified the reciprocal regulation between these two systems. For example, immune signals can regulate metabolism, and metabolism (cellular or systemic) can regulate immunity. In this review, we will summarize recent findings on this reciprocal regulation between immunity and metabolism, and discuss potential biological rules behind this interaction with integrative perspectives.

Keywords

Acknowledgement

We apologize that we cannot cite all the seminal papers on this subject. This work was supported by the Yonsei Research Fund (2021-22-0049), Yonsei Signature Research Cluster Program of 2022 (2022-22-0013), and the National Research Foundation of Korea (NRF) Ministry of Science, ICT and Future Planning NRF-2021-22-0049.

References

  1. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454, 428-435 https://doi.org/10.1038/nature07201
  2. Medzhitov R (2021) The spectrum of inflammatory responses. Science 374, 1070-1075 https://doi.org/10.1126/science.abi5200
  3. Roh JS and Sohn DH (2018) damage-associated molecular patterns in inflammatory diseases. Immune Netw 18, e27 https://doi.org/10.4110/in.2018.18.e27
  4. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ and Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466-470 https://doi.org/10.1038/nature23470
  5. Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666 https://doi.org/10.1126/science.287.5453.664
  6. Keestra-Gounder AM, Byndloss MX, Seyffert N et al (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397 https://doi.org/10.1038/nature17631
  7. Duewell P, Kono H, Rayner KJ et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361 https://doi.org/10.1038/nature08938
  8. Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847-856 https://doi.org/10.1038/ni.1631
  9. Yabal M, Calleja DJ, Simpson DS and Lawlor KE (2019) Stressing out the mitochondria: mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol 105, 377-399 https://doi.org/10.1002/JLB.MR0318-124R
  10. Kotas ME and Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160, 816-827 https://doi.org/10.1016/j.cell.2015.02.010
  11. Chovatiya R and Medzhitov R (2014) Stress, inflammation, and defense of homeostasis. Mol Cell 54, 281-288 https://doi.org/10.1016/j.molcel.2014.03.030
  12. Liu L, Lu Y, Martinez J et al (2016) Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci U S A 113, 1564-1569 https://doi.org/10.1073/pnas.1518000113
  13. Van den Bossche J, Baardman J and de Winther MP (2015) Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. J Vis Exp 105, 53424
  14. Burke JD, Platanias LC and Fish EN (2014) Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol 88, 3485-3495 https://doi.org/10.1128/JVI.02649-13
  15. Dror E, Dalmas E, Meier DT et al (2017) Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 18, 283-292 https://doi.org/10.1038/ni.3659
  16. Jessop F, Buntyn R, Schwarz B, Wehrly T, Scott D and Bosio CM (2020) Interferon gamma reprograms host mitochondrial metabolism through inhibition of complex II to control intracellular bacterial replication. Infect Immun 88, e00744-19
  17. Tan Z, Xie N, Cui H et al (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 194, 6082-6089 https://doi.org/10.4049/jimmunol.1402469
  18. Vats D, Mukundan L, Odegaard JI et al (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4, 13-24 https://doi.org/10.1016/j.cmet.2006.05.011
  19. Michelucci A, Cordes T, Ghelfi J et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110, 7820-7825 https://doi.org/10.1073/pnas.1218599110
  20. Lampropoulou V, Sergushichev A, Bambouskova M et al (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24, 158-166 https://doi.org/10.1016/j.cmet.2016.06.004
  21. Jha AK, Huang SC, Sergushichev A et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430 https://doi.org/10.1016/j.immuni.2015.02.005
  22. Tannahill GM, Curtis AM, Adamik J et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238-242 https://doi.org/10.1038/nature11986
  23. Meiser J, Kramer L, Sapcariu SC et al (2016) Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem 291, 3932- 3946 https://doi.org/10.1074/jbc.M115.676817
  24. Mills EL, Ryan DG, Prag HA et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113-117 https://doi.org/10.1038/nature25986
  25. Bambouskova M, Gorvel L, Lampropoulou V et al (2018) Electrophilic properties of itaconate and derivatives regulate the IκBξ-ATF3 inflammatory axis. Nature 556, 501-504 https://doi.org/10.1038/s41586-018-0052-z
  26. Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H and Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A 107, 7817-7822 https://doi.org/10.1073/pnas.0912059107
  27. Chapman NM and Chi H (2018) Hallmarks of T-cell exit from quiescence. Cancer Immunol Res 6, 502-508 https://doi.org/10.1158/2326-6066.CIR-17-0605
  28. Rathmell JC, Farkash EA, Gao W and Thompson CB (2001) IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167, 6869-6876 https://doi.org/10.4049/jimmunol.167.12.6869
  29. Zhang S, Zhang X, Wang K et al (2018) Newly generated CD4(+) T cells acquire metabolic quiescence after thymic egress. J Immunol 200, 1064-1077 https://doi.org/10.4049/jimmunol.1700721
  30. Miller ML, Mashayekhi M, Chen L et al (2014) Basal NF-κB controls IL-7 responsiveness of quiescent naive T cells. Proc Natl Acad Sci U S A 111, 7397-7402 https://doi.org/10.1073/pnas.1315398111
  31. Fox CJ, Hammerman PS and Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5, 844-852 https://doi.org/10.1038/nri1710
  32. Loftus RM and Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291, 1-10 https://doi.org/10.1074/jbc.R115.693903
  33. Glick GD, Rossignol R, Lyssiotis CA et al (2014) Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J Pharmacol Exp Ther 351, 298-307 https://doi.org/10.1124/jpet.114.218099
  34. Pearce EL and Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633-643 https://doi.org/10.1016/j.immuni.2013.04.005
  35. Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882 https://doi.org/10.1016/j.immuni.2011.09.021
  36. Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM and Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14, 500-508 https://doi.org/10.1038/ni.2556
  37. Lochner M, Berod L and Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36, 81-91 https://doi.org/10.1016/j.it.2014.12.005
  38. Swamy M, Pathak S, Grzes KM et al (2016) Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol 17, 712-720 https://doi.org/10.1038/ni.3439
  39. Lunt SY and Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441-464 https://doi.org/10.1146/annurev-cellbio-092910-154237
  40. Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251 https://doi.org/10.1016/j.cell.2013.05.016
  41. Nagy E, Henics T, Eckert M, Miseta A, Lightowlers RN and Kellermayer M (2000) Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275, 253-260 https://doi.org/10.1006/bbrc.2000.3246
  42. Boukouris AE, Zervopoulos SD and Michelakis ED (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci 41, 712-730 https://doi.org/10.1016/j.tibs.2016.05.013
  43. Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12, 325-338 https://doi.org/10.1038/nri3198
  44. Su X, Yu Y, Zhong Y et al (2015) Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 16, 838-849 https://doi.org/10.1038/ni.3205
  45. Feingold KR, Shigenaga JK, Kazemi MR et al (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92, 829-839 https://doi.org/10.1189/jlb.1111537
  46. Rodriguez-Prados JC, Traves PG, Cuenca J et al (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185, 605-614 https://doi.org/10.4049/jimmunol.0901698
  47. Huang SC, Smith AM, Everts B et al (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817-830 https://doi.org/10.1016/j.immuni.2016.09.016
  48. Wu D, Sanin DE, Everts B et al (2016) Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44, 1325-1336 https://doi.org/10.1016/j.immuni.2016.06.006
  49. York AG, Williams KJ, Argus JP et al (2015) Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716-1729 https://doi.org/10.1016/j.cell.2015.11.045
  50. Fultang L, Gamble LD, Gneo L et al (2019) macrophage-derived IL1β and TNFα regulate arginine metabolism in neuroblastoma. Cancer Res 79, 611-624 https://doi.org/10.1158/0008-5472.can-18-2139
  51. Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y and Tanti JF (2007) Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241-251 https://doi.org/10.1210/en.2006-0692
  52. Lagathu C, Yvan-Charvet L, Bastard JP et al (2006) Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162-2173 https://doi.org/10.1007/s00125-006-0335-z
  53. Gao D, Madi M, Ding C et al (2014) Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 307, E289-E304 https://doi.org/10.1152/ajpendo.00430.2013
  54. Senn JJ, Klover PJ, Nowak IA and Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391-3399 https://doi.org/10.2337/diabetes.51.12.3391
  55. Kim H-J, Higashimori T, Park SY et al (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060-1067 https://doi.org/10.2337/diabetes.53.4.1060
  56. Cai D, Yuan M, Frantz DF et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11, 183-190 https://doi.org/10.1038/nm1166
  57. Hotamisligil GS, Arner P, Caro JF, Atkinson RL and Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95, 2409-2415 https://doi.org/10.1172/JCI117936
  58. Hotamisligil GS, Shargill NS and Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91 https://doi.org/10.1126/science.7678183
  59. Uysal KT, Wiesbrock SM, Marino MW and Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610-614 https://doi.org/10.1038/39335
  60. Wieser V, Adolph TE, Grander C et al (2018) Adipose type I interferon signalling protects against metabolic dysfunction. Gut 67, 157-165 https://doi.org/10.1136/gutjnl-2016-313155
  61. Bruce CR and Dyck DJ (2004) Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 287, E616-E621 https://doi.org/10.1152/ajpendo.00150.2004
  62. Bouhlel MA, Derudas B, Rigamonti E et al (2007) PPAR-gamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6, 137-143 https://doi.org/10.1016/j.cmet.2007.06.010
  63. Nobs SP, Natali S, Pohlmeier L et al (2017) PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J Exp Med 214, 3015-3035 https://doi.org/10.1084/jem.20162069
  64. Kang K, Reilly SM, Karabacak V et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab 7, 485-495 https://doi.org/10.1016/j.cmet.2008.04.002
  65. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A et al (2008) Alternative M2 activation of kupffer cells by PPARδ Ameliorates obesity-induced insulin resistance. Cell Metab 7, 496-507 https://doi.org/10.1016/j.cmet.2008.04.003
  66. Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559-563 https://doi.org/10.1038/nature13490
  67. Zhang J, Muri J, Fitzgerald G et al (2020) Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab 31, 1136-1153.e1137 https://doi.org/10.1016/j.cmet.2020.05.004
  68. Haniuda K, Fukao S and Kitamura D (2020) Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling. Cell Rep 33, 108333 https://doi.org/10.1016/j.celrep.2020.108333
  69. Weisel FJ, Mullett SJ, Elsner RA et al (2020) Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat Immunol 21, 331-342 https://doi.org/10.1038/s41590-020-0598-4
  70. Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI et al (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 107, 22617-22622 https://doi.org/10.1073/pnas.1009152108
  71. Tsao CH, Shiau MY, Chuang PH, Chang YH and Hwang J (2014) Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 55, 385-397 https://doi.org/10.1194/jlr.M041392
  72. Lee MW, Odegaard JI, Mukundan L et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74-87 https://doi.org/10.1016/j.cell.2014.12.011
  73. Brestoff JR, Kim BS, Saenz SA et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242-246 https://doi.org/10.1038/nature14115
  74. Knudsen NH, Stanya KJ, Hyde AL et al (2020) Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368, eaat3987 https://doi.org/10.1126/science.aat3987
  75. Gagliani N, Amezcua Vesely MC, Iseppon A et al (2015) Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221-225 https://doi.org/10.1038/nature14452
  76. Schenk U, Frascoli M, Proietti M et al (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4, ra12 https://doi.org/10.1126/scisignal.2001270
  77. Gerriets VA, Kishton RJ, Nichols AG et al (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125, 194-207 https://doi.org/10.1172/JCI76012
  78. Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186, 3299-3303 https://doi.org/10.4049/jimmunol.1003613
  79. Shi LZ, Wang R, Huang G et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367-1376 https://doi.org/10.1084/jem.20110278
  80. Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20, 1327-1333 https://doi.org/10.1038/nm.3704
  81. Xu T, Stewart KM, Wang X et al (2017) Metabolic control of T(H)17 and induced T(reg) cell balance by an epigenetic mechanism. Nature 548, 228-233 https://doi.org/10.1038/nature23475
  82. Shi W, Zhu Q, Gu J et al (2013) Anti-IL-17 antibody improves hepatic steatosis by suppressing interleukin-17-related fatty acid synthesis and metabolism. Clin Dev Immunol 2013, 253046 https://doi.org/10.1155/2013/253046
  83. Zuniga LA, Shen WJ, Joyce-Shaikh B et al (2010) IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185, 6947-6959 https://doi.org/10.4049/jimmunol.1001269
  84. Ahmed M and Gaffen SL (2013) IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Kruppel-like factors. Cytokine 61, 898-905 https://doi.org/10.1016/j.cyto.2012.12.007
  85. Kohlgruber AC, Gal-Oz ST, LaMarche NM et al (2018) γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol 19, 464-474 https://doi.org/10.1038/s41590-018-0094-2
  86. Hu B, Jin C, Zeng X et al (2020) γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610-614 https://doi.org/10.1038/s41586-020-2028-z
  87. Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15, 930-939 https://doi.org/10.1038/nm.2002
  88. Li C, Wang G, Sivasami P et al (2021) Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab 33, 1610-1623.e1615 https://doi.org/10.1016/j.cmet.2021.06.007
  89. Medrikova D, Sijmonsma TP, Sowodniok K et al (2015) Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS One 10, e0118534 https://doi.org/10.1371/journal.pone.0118534
  90. Kalin S, Becker M, Ott VB et al (2017) A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metab 26, 475-492.e477 https://doi.org/10.1016/j.cmet.2017.08.008
  91. Fang W, Deng Z, Benadjaoud F, Yang D, Yang C and Shi GP (2020) Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J 34, 9755-9770 https://doi.org/10.1096/fj.201902518R