Acknowledgement
We apologize that we cannot cite all the seminal papers on this subject. This work was supported by the Yonsei Research Fund (2021-22-0049), Yonsei Signature Research Cluster Program of 2022 (2022-22-0013), and the National Research Foundation of Korea (NRF) Ministry of Science, ICT and Future Planning NRF-2021-22-0049.
References
- Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454, 428-435 https://doi.org/10.1038/nature07201
- Medzhitov R (2021) The spectrum of inflammatory responses. Science 374, 1070-1075 https://doi.org/10.1126/science.abi5200
- Roh JS and Sohn DH (2018) damage-associated molecular patterns in inflammatory diseases. Immune Netw 18, e27 https://doi.org/10.4110/in.2018.18.e27
- Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ and Greenberg RA (2017) Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466-470 https://doi.org/10.1038/nature23470
- Urano F, Wang X, Bertolotti A et al (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666 https://doi.org/10.1126/science.287.5453.664
- Keestra-Gounder AM, Byndloss MX, Seyffert N et al (2016) NOD1 and NOD2 signalling links ER stress with inflammation. Nature 532, 394-397 https://doi.org/10.1038/nature17631
- Duewell P, Kono H, Rayner KJ et al (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357-1361 https://doi.org/10.1038/nature08938
- Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9, 847-856 https://doi.org/10.1038/ni.1631
- Yabal M, Calleja DJ, Simpson DS and Lawlor KE (2019) Stressing out the mitochondria: mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol 105, 377-399 https://doi.org/10.1002/JLB.MR0318-124R
- Kotas ME and Medzhitov R (2015) Homeostasis, inflammation, and disease susceptibility. Cell 160, 816-827 https://doi.org/10.1016/j.cell.2015.02.010
- Chovatiya R and Medzhitov R (2014) Stress, inflammation, and defense of homeostasis. Mol Cell 54, 281-288 https://doi.org/10.1016/j.molcel.2014.03.030
- Liu L, Lu Y, Martinez J et al (2016) Proinflammatory signal suppresses proliferation and shifts macrophage metabolism from Myc-dependent to HIF1α-dependent. Proc Natl Acad Sci U S A 113, 1564-1569 https://doi.org/10.1073/pnas.1518000113
- Van den Bossche J, Baardman J and de Winther MP (2015) Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis. J Vis Exp 105, 53424
- Burke JD, Platanias LC and Fish EN (2014) Beta interferon regulation of glucose metabolism is PI3K/Akt dependent and important for antiviral activity against coxsackievirus B3. J Virol 88, 3485-3495 https://doi.org/10.1128/JVI.02649-13
- Dror E, Dalmas E, Meier DT et al (2017) Postprandial macrophage-derived IL-1β stimulates insulin, and both synergistically promote glucose disposal and inflammation. Nat Immunol 18, 283-292 https://doi.org/10.1038/ni.3659
- Jessop F, Buntyn R, Schwarz B, Wehrly T, Scott D and Bosio CM (2020) Interferon gamma reprograms host mitochondrial metabolism through inhibition of complex II to control intracellular bacterial replication. Infect Immun 88, e00744-19
- Tan Z, Xie N, Cui H et al (2015) Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J Immunol 194, 6082-6089 https://doi.org/10.4049/jimmunol.1402469
- Vats D, Mukundan L, Odegaard JI et al (2006) Oxidative metabolism and PGC-1beta attenuate macrophage-mediated inflammation. Cell Metab 4, 13-24 https://doi.org/10.1016/j.cmet.2006.05.011
- Michelucci A, Cordes T, Ghelfi J et al (2013) Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A 110, 7820-7825 https://doi.org/10.1073/pnas.1218599110
- Lampropoulou V, Sergushichev A, Bambouskova M et al (2016) Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab 24, 158-166 https://doi.org/10.1016/j.cmet.2016.06.004
- Jha AK, Huang SC, Sergushichev A et al (2015) Network integration of parallel metabolic and transcriptional data reveals metabolic modules that regulate macrophage polarization. Immunity 42, 419-430 https://doi.org/10.1016/j.immuni.2015.02.005
- Tannahill GM, Curtis AM, Adamik J et al (2013) Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238-242 https://doi.org/10.1038/nature11986
- Meiser J, Kramer L, Sapcariu SC et al (2016) Pro-inflammatory macrophages sustain pyruvate oxidation through pyruvate dehydrogenase for the synthesis of itaconate and to enable cytokine expression. J Biol Chem 291, 3932- 3946 https://doi.org/10.1074/jbc.M115.676817
- Mills EL, Ryan DG, Prag HA et al (2018) Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113-117 https://doi.org/10.1038/nature25986
- Bambouskova M, Gorvel L, Lampropoulou V et al (2018) Electrophilic properties of itaconate and derivatives regulate the IκBξ-ATF3 inflammatory axis. Nature 556, 501-504 https://doi.org/10.1038/s41586-018-0052-z
- Ecker J, Liebisch G, Englmaier M, Grandl M, Robenek H and Schmitz G (2010) Induction of fatty acid synthesis is a key requirement for phagocytic differentiation of human monocytes. Proc Natl Acad Sci U S A 107, 7817-7822 https://doi.org/10.1073/pnas.0912059107
- Chapman NM and Chi H (2018) Hallmarks of T-cell exit from quiescence. Cancer Immunol Res 6, 502-508 https://doi.org/10.1158/2326-6066.CIR-17-0605
- Rathmell JC, Farkash EA, Gao W and Thompson CB (2001) IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167, 6869-6876 https://doi.org/10.4049/jimmunol.167.12.6869
- Zhang S, Zhang X, Wang K et al (2018) Newly generated CD4(+) T cells acquire metabolic quiescence after thymic egress. J Immunol 200, 1064-1077 https://doi.org/10.4049/jimmunol.1700721
- Miller ML, Mashayekhi M, Chen L et al (2014) Basal NF-κB controls IL-7 responsiveness of quiescent naive T cells. Proc Natl Acad Sci U S A 111, 7397-7402 https://doi.org/10.1073/pnas.1315398111
- Fox CJ, Hammerman PS and Thompson CB (2005) Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol 5, 844-852 https://doi.org/10.1038/nri1710
- Loftus RM and Finlay DK (2016) Immunometabolism: cellular metabolism turns immune regulator. J Biol Chem 291, 1-10 https://doi.org/10.1074/jbc.R115.693903
- Glick GD, Rossignol R, Lyssiotis CA et al (2014) Anaplerotic metabolism of alloreactive T cells provides a metabolic approach to treat graft-versus-host disease. J Pharmacol Exp Ther 351, 298-307 https://doi.org/10.1124/jpet.114.218099
- Pearce EL and Pearce EJ (2013) Metabolic pathways in immune cell activation and quiescence. Immunity 38, 633-643 https://doi.org/10.1016/j.immuni.2013.04.005
- Wang R, Dillon CP, Shi LZ et al (2011) The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882 https://doi.org/10.1016/j.immuni.2011.09.021
- Sinclair LV, Rolf J, Emslie E, Shi YB, Taylor PM and Cantrell DA (2013) Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nat Immunol 14, 500-508 https://doi.org/10.1038/ni.2556
- Lochner M, Berod L and Sparwasser T (2015) Fatty acid metabolism in the regulation of T cell function. Trends Immunol 36, 81-91 https://doi.org/10.1016/j.it.2014.12.005
- Swamy M, Pathak S, Grzes KM et al (2016) Glucose and glutamine fuel protein O-GlcNAcylation to control T cell self-renewal and malignancy. Nat Immunol 17, 712-720 https://doi.org/10.1038/ni.3439
- Lunt SY and Vander Heiden MG (2011) Aerobic glycolysis: meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol 27, 441-464 https://doi.org/10.1146/annurev-cellbio-092910-154237
- Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251 https://doi.org/10.1016/j.cell.2013.05.016
- Nagy E, Henics T, Eckert M, Miseta A, Lightowlers RN and Kellermayer M (2000) Identification of the NAD(+)-binding fold of glyceraldehyde-3-phosphate dehydrogenase as a novel RNA-binding domain. Biochem Biophys Res Commun 275, 253-260 https://doi.org/10.1006/bbrc.2000.3246
- Boukouris AE, Zervopoulos SD and Michelakis ED (2016) Metabolic enzymes moonlighting in the nucleus: metabolic regulation of gene transcription. Trends Biochem Sci 41, 712-730 https://doi.org/10.1016/j.tibs.2016.05.013
- Chi H (2012) Regulation and function of mTOR signalling in T cell fate decisions. Nat Rev Immunol 12, 325-338 https://doi.org/10.1038/nri3198
- Su X, Yu Y, Zhong Y et al (2015) Interferon-γ regulates cellular metabolism and mRNA translation to potentiate macrophage activation. Nat Immunol 16, 838-849 https://doi.org/10.1038/ni.3205
- Feingold KR, Shigenaga JK, Kazemi MR et al (2012) Mechanisms of triglyceride accumulation in activated macrophages. J Leukoc Biol 92, 829-839 https://doi.org/10.1189/jlb.1111537
- Rodriguez-Prados JC, Traves PG, Cuenca J et al (2010) Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J Immunol 185, 605-614 https://doi.org/10.4049/jimmunol.0901698
- Huang SC, Smith AM, Everts B et al (2016) Metabolic reprogramming mediated by the mTORC2-IRF4 signaling axis is essential for macrophage alternative activation. Immunity 45, 817-830 https://doi.org/10.1016/j.immuni.2016.09.016
- Wu D, Sanin DE, Everts B et al (2016) Type 1 interferons induce changes in core metabolism that are critical for immune function. Immunity 44, 1325-1336 https://doi.org/10.1016/j.immuni.2016.06.006
- York AG, Williams KJ, Argus JP et al (2015) Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling. Cell 163, 1716-1729 https://doi.org/10.1016/j.cell.2015.11.045
- Fultang L, Gamble LD, Gneo L et al (2019) macrophage-derived IL1β and TNFα regulate arginine metabolism in neuroblastoma. Cancer Res 79, 611-624 https://doi.org/10.1158/0008-5472.can-18-2139
- Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y and Tanti JF (2007) Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241-251 https://doi.org/10.1210/en.2006-0692
- Lagathu C, Yvan-Charvet L, Bastard JP et al (2006) Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162-2173 https://doi.org/10.1007/s00125-006-0335-z
- Gao D, Madi M, Ding C et al (2014) Interleukin-1β mediates macrophage-induced impairment of insulin signaling in human primary adipocytes. Am J Physiol Endocrinol Metab 307, E289-E304 https://doi.org/10.1152/ajpendo.00430.2013
- Senn JJ, Klover PJ, Nowak IA and Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51, 3391-3399 https://doi.org/10.2337/diabetes.51.12.3391
- Kim H-J, Higashimori T, Park SY et al (2004) Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes 53, 1060-1067 https://doi.org/10.2337/diabetes.53.4.1060
- Cai D, Yuan M, Frantz DF et al (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nat Med 11, 183-190 https://doi.org/10.1038/nm1166
- Hotamisligil GS, Arner P, Caro JF, Atkinson RL and Spiegelman BM (1995) Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest 95, 2409-2415 https://doi.org/10.1172/JCI117936
- Hotamisligil GS, Shargill NS and Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87-91 https://doi.org/10.1126/science.7678183
- Uysal KT, Wiesbrock SM, Marino MW and Hotamisligil GS (1997) Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610-614 https://doi.org/10.1038/39335
- Wieser V, Adolph TE, Grander C et al (2018) Adipose type I interferon signalling protects against metabolic dysfunction. Gut 67, 157-165 https://doi.org/10.1136/gutjnl-2016-313155
- Bruce CR and Dyck DJ (2004) Cytokine regulation of skeletal muscle fatty acid metabolism: effect of interleukin-6 and tumor necrosis factor-alpha. Am J Physiol Endocrinol Metab 287, E616-E621 https://doi.org/10.1152/ajpendo.00150.2004
- Bouhlel MA, Derudas B, Rigamonti E et al (2007) PPAR-gamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 6, 137-143 https://doi.org/10.1016/j.cmet.2007.06.010
- Nobs SP, Natali S, Pohlmeier L et al (2017) PPARγ in dendritic cells and T cells drives pathogenic type-2 effector responses in lung inflammation. J Exp Med 214, 3015-3035 https://doi.org/10.1084/jem.20162069
- Kang K, Reilly SM, Karabacak V et al (2008) Adipocyte-derived Th2 cytokines and myeloid PPARδ regulate macrophage polarization and insulin sensitivity. Cell Metab 7, 485-495 https://doi.org/10.1016/j.cmet.2008.04.002
- Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A et al (2008) Alternative M2 activation of kupffer cells by PPARδ Ameliorates obesity-induced insulin resistance. Cell Metab 7, 496-507 https://doi.org/10.1016/j.cmet.2008.04.003
- Colegio OR, Chu NQ, Szabo AL et al (2014) Functional polarization of tumour-associated macrophages by tumour-derived lactic acid. Nature 513, 559-563 https://doi.org/10.1038/nature13490
- Zhang J, Muri J, Fitzgerald G et al (2020) Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization. Cell Metab 31, 1136-1153.e1137 https://doi.org/10.1016/j.cmet.2020.05.004
- Haniuda K, Fukao S and Kitamura D (2020) Metabolic reprogramming induces germinal center B cell differentiation through Bcl6 locus remodeling. Cell Rep 33, 108333 https://doi.org/10.1016/j.celrep.2020.108333
- Weisel FJ, Mullett SJ, Elsner RA et al (2020) Germinal center B cells selectively oxidize fatty acids for energy while conducting minimal glycolysis. Nat Immunol 21, 331-342 https://doi.org/10.1038/s41590-020-0598-4
- Ricardo-Gonzalez RR, Red Eagle A, Odegaard JI et al (2010) IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proc Natl Acad Sci U S A 107, 22617-22622 https://doi.org/10.1073/pnas.1009152108
- Tsao CH, Shiau MY, Chuang PH, Chang YH and Hwang J (2014) Interleukin-4 regulates lipid metabolism by inhibiting adipogenesis and promoting lipolysis. J Lipid Res 55, 385-397 https://doi.org/10.1194/jlr.M041392
- Lee MW, Odegaard JI, Mukundan L et al (2015) Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74-87 https://doi.org/10.1016/j.cell.2014.12.011
- Brestoff JR, Kim BS, Saenz SA et al (2015) Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242-246 https://doi.org/10.1038/nature14115
- Knudsen NH, Stanya KJ, Hyde AL et al (2020) Interleukin-13 drives metabolic conditioning of muscle to endurance exercise. Science 368, eaat3987 https://doi.org/10.1126/science.aat3987
- Gagliani N, Amezcua Vesely MC, Iseppon A et al (2015) Th17 cells transdifferentiate into regulatory T cells during resolution of inflammation. Nature 523, 221-225 https://doi.org/10.1038/nature14452
- Schenk U, Frascoli M, Proietti M et al (2011) ATP inhibits the generation and function of regulatory T cells through the activation of purinergic P2X receptors. Sci Signal 4, ra12 https://doi.org/10.1126/scisignal.2001270
- Gerriets VA, Kishton RJ, Nichols AG et al (2015) Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J Clin Invest 125, 194-207 https://doi.org/10.1172/JCI76012
- Michalek RD, Gerriets VA, Jacobs SR et al (2011) Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol 186, 3299-3303 https://doi.org/10.4049/jimmunol.1003613
- Shi LZ, Wang R, Huang G et al (2011) HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med 208, 1367-1376 https://doi.org/10.1084/jem.20110278
- Berod L, Friedrich C, Nandan A et al (2014) De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat Med 20, 1327-1333 https://doi.org/10.1038/nm.3704
- Xu T, Stewart KM, Wang X et al (2017) Metabolic control of T(H)17 and induced T(reg) cell balance by an epigenetic mechanism. Nature 548, 228-233 https://doi.org/10.1038/nature23475
- Shi W, Zhu Q, Gu J et al (2013) Anti-IL-17 antibody improves hepatic steatosis by suppressing interleukin-17-related fatty acid synthesis and metabolism. Clin Dev Immunol 2013, 253046 https://doi.org/10.1155/2013/253046
- Zuniga LA, Shen WJ, Joyce-Shaikh B et al (2010) IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J Immunol 185, 6947-6959 https://doi.org/10.4049/jimmunol.1001269
- Ahmed M and Gaffen SL (2013) IL-17 inhibits adipogenesis in part via C/EBPα, PPARγ and Kruppel-like factors. Cytokine 61, 898-905 https://doi.org/10.1016/j.cyto.2012.12.007
- Kohlgruber AC, Gal-Oz ST, LaMarche NM et al (2018) γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis. Nat Immunol 19, 464-474 https://doi.org/10.1038/s41590-018-0094-2
- Hu B, Jin C, Zeng X et al (2020) γδ T cells and adipocyte IL-17RC control fat innervation and thermogenesis. Nature 578, 610-614 https://doi.org/10.1038/s41586-020-2028-z
- Feuerer M, Herrero L, Cipolletta D et al (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15, 930-939 https://doi.org/10.1038/nm.2002
- Li C, Wang G, Sivasami P et al (2021) Interferon-α-producing plasmacytoid dendritic cells drive the loss of adipose tissue regulatory T cells during obesity. Cell Metab 33, 1610-1623.e1615 https://doi.org/10.1016/j.cmet.2021.06.007
- Medrikova D, Sijmonsma TP, Sowodniok K et al (2015) Brown adipose tissue harbors a distinct sub-population of regulatory T cells. PLoS One 10, e0118534 https://doi.org/10.1371/journal.pone.0118534
- Kalin S, Becker M, Ott VB et al (2017) A Stat6/Pten axis links regulatory T cells with adipose tissue function. Cell Metab 26, 475-492.e477 https://doi.org/10.1016/j.cmet.2017.08.008
- Fang W, Deng Z, Benadjaoud F, Yang D, Yang C and Shi GP (2020) Regulatory T cells promote adipocyte beiging in subcutaneous adipose tissue. FASEB J 34, 9755-9770 https://doi.org/10.1096/fj.201902518R