• Title/Summary/Keyword: Process-error model

Search Result 1,168, Processing Time 0.028 seconds

Development of Time Varying Kalman Smoother for Extracting Fetal ECG using Independent Component Analysis : Preliminary Study (독립요소분석을 이용한 태아심전도 추출을 위한 시변 칼만 평활기의 개발 : 예비연구)

  • Lee, Chung Keun;Kim, Bong Soo;Kwon, Ja Young;Choi, Young Deuk;Song, Kwang Soup;Nam, Ki Chang
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.202-208
    • /
    • 2012
  • Fetal heart rate monitoring is important information to assess fetal well-being. Non-invasive fetal ECG (electrocardiography) can be derived from maternal abdominal signal. And various promising signal processing methods have been introduced to extract fetal ECG from mother's composite abdominal signal. However, non-invasive fetal ECG monitoring still has not been widely used in clinical practice due to insufficient reliable measurement and difficulty of signal processing. In application of signal processing method to extract fetal ECG, it might be lower signal to noise ratio due to time varying white Gaussian noise. In this paper, time varying Kalman smoother is proposed to remove white noise in fetal ECG and its feasibility is confirmed. Wiener process was set as Kalman system model and covariance matrix was modified according to white Gaussian noise level. Modified error covariance matrix changed Kalman gain and degree of smoothness. Optimal covariance matrix according to various amplitude in Gaussian white noise was extracted by 5 channel fetal ECG model, and feasibility of proposed method could be confirmed.

Simulation on the shape of tuna longline gear (다랑어 연승어구의 형상에 관한 시뮬레이션)

  • 이지훈;이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.305-317
    • /
    • 2003
  • Underwater shape and hook depth in tuna longline gear are important factors to decide fishing performance. It also should be considered that management and analysis of hooked rate data from hooked fish species and sizes, and each fishing would be used as a reference data in the future fishing. In this research, after analyzing underwater shape of tuna longline gear by current direction and speed using simulation, experiments were executed in flume tank to verify accuracy of the analysis. Also using the depth of each hook from the simulation, a database system was setup to process the data of bait and hooked fish species. The results were as follows;1. When the attack angle and the shortening rate are fixed, a decrease of the hook depth is proportion to an increase of current speed. 2. When the shortening rate and current speed are fixed, a decrease of hook depth is proportion to an increase of attack angle. 3. When the attack angle and velocity of flow are fixed, a decrease of hook depth is proportion to an increase of shortening rate 4. As a result of comparison between the underwater shape by simulation and that by model gear, the result of the simulation was very close to that of model gear within $$ {\pm}3%$$ 3% error range. 5. In this research, hooked rate database system using hook depth of simulation can analyze the species and size of fish by the parameter; bait. hook depth, so It could be helpful to manage and analyze the hooked data on the field.

Emulsification of Natural Sunscreen with Green Tea Extract : Optimization Using CCD-RSM (녹차추출물이 함유된 천연 자외선차단 크림의 제조: CCD-RSM을 이용한 최적화)

  • Lee, Seung Bum;Zuo, Chengliang;Xu, Yang;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.532-538
    • /
    • 2020
  • In this study, emulsification process were conducted to manufacture the natural sunscreen from raw materials such as shea butter, olive emulsifier wax, and green tea extract. The emulsification was optimized by using the central composite design model-response surface methodology (CCD-RSM) where the response values were established as the mean droplet size (MDS) and emulsion stability index (ESI) after 7 days in addition to UV absorbance at 300nm. The amount of emulsifier and additives and emulsification time were established as operating variables and the optimal conditions of sunscreen emulsification were accepted as 3.70, 2.47 wt.%, and 15.42 min, respectively according to the result of CCD-RSM. On the other hand, the response values were estimated as 1173.80 nm and 99.56% for MDS and ESI, respectively, after 7 days, in addition to UV absorbance at 300 nm (2.47). The average error from actual experiments was a low level as about 3.0 ± 1.5%, which is mainly due to the fact that the optimization using CCD-RSM applied in this study was in the relatively high significant level.

Schematic Cost Estimation Method using Case-Based Reasoning: Focusing on Determining Attribute Weight (사례기반추론을 이용한 초기단계 공사비 예측 방법: 속성 가중치 산정을 중심으로)

  • Park, Moon-Seo;Seong, Ki-Hoon;Lee, Hyun-Soo;Ji, Sae-Hyun;Kim, Soo-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.11 no.4
    • /
    • pp.22-31
    • /
    • 2010
  • Because the estimated cost at early stage has great influence on decisions of project owner, the importance of early cost estimation is increasing. However, it depends on experience and knowledge of the estimator mainly due to shortage of information. Those tendency developed into case-based reasoning(CBR) method which solves new problems by adapting previous solution to similar past problems. The performance of CBR model is affected by attribute weight, so that its accurate determination is necessary. Previous research utilizes mathematical method or subjective judgement of estimator. In order to improve the problem of previous research, this suggests CBR schematic cost estimation method using genetic algorithm to determine attribute weight. The cost model employs nearest neighbor retrieval for selecting past case. And it estimates the cost of new cases based on cost information of extracted cases. As the result of validation for 17 testing cases, 3.57% of error rate is calculated. This rate is superior to accuracy rate proposed by AACE and the method to determine attribute weight using multiple regression analysis and feature counting. The CBR cost estimation method improve the accuracy by introducing genetic algorithm for attribute weight. Moreover, this makes user understand the problem-solving process easier than other artificial intelligence method, and find solution within short time through case retrieval algorithm.

A Study on the Architecture Modeling of Information System using Simulation (시뮬레이션을 이용한 정보시스템 아키텍쳐 모델링에 관한 연구)

  • Park, Sang-Kook;Kim, Jong-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.455-458
    • /
    • 2013
  • The conventional design of the information system architecture based on the personal experience of information systems has been acted as a limit in progress utilizing appropriate resource allocation and performance improvements. Architecture design depending on personal experience makes differences in variance of a designer's experience, intellectual level in related tasks and surroundings, and architecture quality according to individual's propensity. After all these problems cause a waste of expensive hardware resources. At working place, post-monitoring tools are diversely developed and are running to find the bottleneck and the process problems in the information operation. However, there are no simulation tools or models that are used for expecting and counteracting the problems at early period of designing architecture. To solve these problems we will first develop a simulation model for designing information system architecture in a pilot form, and will verify validity. If an error rate is found in the permissible range, then it can be said that the simulation reflects the characteristic of information system architecture. After the model is developed in a level that can be used in various ways, more accurate performance computation will be able to do, getting out of the old way relying on calculations, and prevent the existence of idle resources and expense waste that comes from the wrong design of architecture.

  • PDF

Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation (카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발)

  • Ahn, Sung-Hyuk;Kang, Dong-Eun;Moon, Hyoung-Deuk;Park, So-Yeon;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1069-1077
    • /
    • 2008
  • The railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region which is projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be processed exactly. But, the conventional railway abrasion measurement system is deeply effected by the foreign substance( dust, rainwater, and so on ) on the railway or the sensitive response characteristic of the laser to the external measurement circumstance, and then the measurement errors arise from above factors. When the laser region is projected on the rail extracts from the acquired image, the interference of the light with the same frequency as the laser system occurs the serious problems. In the process of the mapping between the railway profile and the extracted laser region, the measurement accuracy is very highly effected by the geometrical distortion and the abnormal variation. In this Paper, we propose the novel method to increase the accuracy of the railway abrasion measurement dramatically. we designed and manufactured the high precision and fast image processing board with DSP Core and FPGA to measure the railway abrasion. The image processing board has the capability that the image of 1024X1280 from camera can be processed with the speed of 480 frame/sec. And, we apply the image processing algorithm base on the wavelet to extract the laser region is projected on the rail exactly. Finally, we developed high precision railway abrasion measurement system with the error range less than +/-0.5mm by which 2D image data is covered 3D data and mapped on the rail profile using the camera model and the perspective transform.

  • PDF

Ultrasound-assisted Extraction of Total Flavonoids from Wheat Sprout: Optimization Using Central Composite Design Method (밀싹으로부터 플라보노이드성분의 초음파 추출 : 중심합성계획모델을 이용한 최적화)

  • Lee, Seung Bum;Wang, Xiaozheng;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.663-669
    • /
    • 2018
  • The process of extracting active ingredients from wheat sprout using ultrasound assisted method was optimized with a central composite design model. The response value of the central composite design model established the extraction yield and the total flavonoids content, main effects and interactive effects were analyzed depending on independent variables such as the extraction time, volume ratio of ethanol to ultrapure water, and ultrasonic irradiation power. The volume ratio of ethanol to ultrapure water and ultrasonic irradiation power were relatively large for the extraction yield and the extraction time was most significantly affected the total flavonoids, Considering both the extraction yield and total flavonoids content, the optimal extraction conditions were as follows: the extraction time of 17.00 min, volume ratio of ethanol to ultrapure water of 50.25 vol%, ultrasonic irradiation power of 551.70 W. In this case, the extraction yield and total flavonoids content were 28.43 wt% and $29.99{\mu}g\;QE/mL\;dw$, respectively. The actual experimental extraction yield and total flavonoids content under this condition were 8.73 wt% and $29.65{\mu}g\;QE/mL\;dw$, respectively with respective error rates of 1.05 and 1.13%.

Optimization of Antioxidant Extraction from Dandelion (Taraxacum officinale) Leaves Using BBD-RSM (BBD-RSM을 이용한 민들레로부터 항산화성분의 추출공정 최적화)

  • Han, Kyongho;Jang, Hyun Sik;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.408-414
    • /
    • 2019
  • In this study, an antioxidant was extracted from dandelion leaves using traditional hot water and ultrasonic extraction methods. In order to optimize the extraction yield and total flavonoid, an antioxidant, Box-Behnken design (BBD) model among response surface analysis methods was used. In the case of hot water extraction, the extraction temperature and time as well as the ratio of alcohol/ultrapure water were set as variables, and for the ultrasonic extraction, the ultrasonic survey century and irradiation time and the ratio of alcohol/ultrapure water were variables. Optimum extraction conditions in the hot water extraction method were the extraction temperature and time of $45.76^{\circ}C$ and 1.75 h and the ratio of alcohol/ultrapure water of 41.92 vol.%. While for the ultrasonic extraction method the survey century of 512.63 W, the ratio of alcohol/ultrapure water of 56.97 vol.% and the extraction time of 20.79 min were optimum conditions. Expected reaction yield and flavonoid content values under the optimized condition were calculated as 22.09 wt.% and 28.98 mg QE/mL dw, respectively. In addition, the error value of less than 3% was obtained validating our optimization process.

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach (시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.263-269
    • /
    • 2018
  • Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

Characteristics of Equilibrium, Kinetics and Thermodynamics for Adsorption of Disperse Yellow 3 Dye by Activated Carbon (활성탄에 의한 Disperse Yellow 3 염료의 흡착에 있어서 평형, 동력학 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2021
  • The adsorption of disperse yellow 3 (DY 3) on granular activated carbon (GAC) was investigated for isothermal adsorption and kinetic and thermodynamic parameters by experimenting with initial concentration, contact time, temperature, and pH of the dye as adsorption parameters. In the pH change experiment, the adsorption percent of DY 3 on activated carbon was highest in the acidic region, pH 3 due to electrostatic attraction between the surface of the activated carbon with positive charge and the anion (OH-) of DY 3. The adsorption equilibrium data of DY 3 fit the Langmuir isothermal adsorption equation best, and it was found that activated carbon can effectively remove DY 3 from the calculated separation factor (RL). The heat of adsorption-related constant (B) from the Temkin equation did not exceed 20 J mol-1, indicating that it is a physical adsorption process. The pseudo second order kinetic model fits well within 10.72% of the error percent in the kinetic experiments. The plots for Weber and Morris intraparticle diffusion model were divided into two straight lines. The intraparticle diffusion rate was slow because the slope of the stage 2 (intraparticle diffusion) was smaller than that of stage 1 (boundary layer diffusion). Therefore, it was confirmed that the intraparticle diffusion was rate controlling step. The free energy change of the DY 3 adsorption by activated carbon showed negative values at 298 ~ 318 K. As the temperature increased, the spontaneity increased. The enthalpy change of the adsorption reaction of DY 3 by activated carbon was 0.65 kJ mol-1, which was an endothermic reaction, and the entropy change was 2.14 J mol-1 K-1.