DOI QR코드

DOI QR Code

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach

시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근

  • Jung, Taehwa (Department of Civil and Environmental Engineering, Hanbat National University) ;
  • Son, Sangyoung (School of Civil, Environmental, and Architectural Engineering, Korea University)
  • 정태화 (한밭대학교 건설환경공학과) ;
  • 손상영 (고려대학교 건축사회환경공학부)
  • Received : 2018.11.05
  • Accepted : 2018.12.12
  • Published : 2018.12.31

Abstract

Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

해저에서 지진 및 산사태 등에 기인하는 수심변화는 자유수면의 변동을 유발한다. 이러한 자유수면의 변동은 해안으로 전파하고 천수현상에 의해 파고가 상승하면서 큰 피해를 야기한다. 지진해일의 생성 및 전파과정을 모의하기 위해 다양한 수치해석모형이 개발된 바 있다. 대부분의 지진해일모형은 해저 지반의 움직임이 수면에 즉시적이고 동일하게 전달된다는 가정하에 초기수면을 결정한다. 하지만, 이 접근 방법은 시간적 및 공간적 차이를 지니고 발생하는 해저지진의 특성을 고려하지 못하며, 이는 그대로 해석오차에 반영된다. 본 연구에서는 Hammack(1973)의 해석해를 응용하여 수심이 시간차를 가지고 변할 때 이로 인한 초기 자유수면의 변동과 이렇게 변화된 수면의 전파 특성을 모의하고 그 결과를 검토하였다. 이는 다양한 유형의 지반운동과 자유수면 형성과의 인과관계 및 상승된 자유수면의 이동속도 등의 관계규명에 도움이 될 것이다.

Keywords

References

  1. Bryant, E. (2014). Tsunami. Springer.
  2. Dutykh, D. and Dias, F. (2007). Water waves generated by a moving bottom. Tsunami and Nonlinear Waves (ed. A. Kundu), Geo Sciences. New York, Springer, 63-94.
  3. Dutykh, D., Dias, F. and Kervella, Y. (2006). Linear theory of wave generation by a moving bottom. Comptes Rendus de l'Academie des Sciences Paris, Series I 343, 499-504.
  4. Duthkh, D., Mitsotakis, X., Gardeil, X. and Dias, F. (2013). On the use of the finite fault solution for tsunami generation problem. Theoretical and Computational Fluid Dynamics, 27(1-2), 177-199. https://doi.org/10.1007/s00162-011-0252-8
  5. Filon, L.N.G. (1930). On a quadrature formula for trigonometric integrals. Proceedings of the Royal Society of London A, 49, 38-47.
  6. George, D.L. and LeVeque, R.J. (2006). Finite volume methods and adaptive refinement for global tsunami propagation and local inundation. Science of Tsunami Hazards, 24, 319-328.
  7. Grilli, S.T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J.T. and Watts, P. (2007). Source constraints and model simulation of the December 26, 2004, Indian Ocean Tsunami. Journal of Waterway, Port, Coastal, and Ocean Engineering, 133(6), 414-428. https://doi.org/10.1061/(ASCE)0733-950X(2007)133:6(414)
  8. Gusiakov, V.K. (2009). Tsunami history: recorded. The Sea, 15, 23-53.
  9. Hammack, J.L. (1973). A note on tsunamis: their generation and propagation in an ocean of uniform depth. Journal of Fluid Mechanics, 60(4), 769-799. https://doi.org/10.1017/S0022112073000479
  10. Imai, K., Satake, K. and Furumura, T. (2010). Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 62(4), 427-432. https://doi.org/10.5047/eps.2009.12.005
  11. Ishii, M., Shearer, P.M., Houston, H. and Vidale, J.E. (2005). Extent, duration and speed of the 2004 Sumatra-Andaman earthquake imaged by the Hi-Net array. Nature, 435(7044), 933. https://doi.org/10.1038/nature03675
  12. Kajiura, K. (1963). The leading wave of a tsunami. Bulletin Earthquake Research Institute. Tokyo University, 41, 535-571.
  13. Kervella, Y., Dutykh, D. and Dias, F. (2007). Comparison between three-dimensional linear and nonlinear tsunami generation models. Theoretical and Computational Fluid Dynamics, 21, 245-269. https://doi.org/10.1007/s00162-007-0047-0
  14. Kowalik et al. (2005). Numerical modeling of the global tsunami: Indonesian Tsunami of 26 December 2004. Science of Tsunami Hazards, 23(1), 40-56.
  15. Lee, J.-W., Park, E.H., Park, S.-C. and Woo, S.-B. (2015). Development of the global tsunami prediction system using the finite fault model and the cyclic boundary condition. Journal of Korean Society of Coastal and Ocean Engineers, 27(6), 391-405. https://doi.org/10.9765/KSCOE.2015.27.6.391
  16. Ohmachi, T., Tsukiyama, H. and Matsumoto, H. (2001). Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bulletin of the Seismological Society of America, 91(6), 1898-1909. https://doi.org/10.1785/0120000074
  17. Pringle, W.J., Yoneyama, N. and Mori, N. (2018). Multiscale coupled three-dimensional model analysis of the tsunami flow characteristics around the Kamaishi Bay offshore breakwater and comparisons to a shallow water model. Coastal Engineering Journal, 60(2), 200-224. https://doi.org/10.1080/21664250.2018.1484270
  18. Saito, T. and Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877-888. https://doi.org/10.1111/j.1365-246X.2009.04206.x
  19. Son, S., Lynett., P. and Kim, D.-H. (2011). Nested and multi physics modeling of tsunami evolution from generation to inundation. Ocean Modelling, 38, 96-113. https://doi.org/10.1016/j.ocemod.2011.02.007
  20. Suppasri, A., Imamura, F. and Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52(2), 107-132. https://doi.org/10.1142/S0578563410002142
  21. Suzuki, W., Aoi, S., Sekiguchi, H. and Kunugi, T. (2011). Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophysical Research Letters, 38(7).
  22. Titov, V.V. and Synolakis, C.E. (1998). Numerical modeling of tidal wave runup. Journal of Waterway, Port, Coastal, and Ocean Engineering, 124 (4), 157-171. https://doi.org/10.1061/(ASCE)0733-950X(1998)124:4(157)
  23. Wang, X. (2009). User manual for COMCOT version 1.7 (first draft). Cornel University, 65.
  24. Wilson, R.I., Admire, A.R., Borrero, J.C., Dengler, L.A., Legg, M.R., Lynett, P., McCrink, T.P., Miller, K.M., Ritchie, A., Sterling, K. and Whitmore, P.M. (2013). Observations and impacts from the 2010 Chilean and 2011 Japanese tsunamis in California (USA). Pure and Applied Geophysics, 170(6-8), 1127-1147. https://doi.org/10.1007/s00024-012-0527-z