• Title/Summary/Keyword: Process Channel

Search Result 2,138, Processing Time 0.027 seconds

Channel Protection Layer Effect on the Performance of Oxide TFTs

  • KoPark, Sang-Hee;Cho, Doo-Hee;Hwang, Chi-Sun;Yang, Shin-Hyuk;Ryu, Min-Ki;Byun, Chun-Won;Yoon, Sung-Min;Cheong, Woo-Seok;Cho, Kyoung-Ik;Jeon, Jae-Hong
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.653-659
    • /
    • 2009
  • We have investigated the channel protection layer (PL) effect on the performance of an oxide thin film transistor (TFT) with a staggered top gate ZnO TFT and Al-doped zinc tin oxide (AZTO) TFT. Deposition of an ultra-thin PL on oxide semiconductor films enables TFTs to behave well by protecting the channel from a photo-resist (PR) stripper which removes the depleted surface of the active layer and increases the carrier amount in the channel. In addition, adopting a PL prevents channel contamination from the organic PR and results in high mobility and small subthreshold swings. The PL process plays a critical role in the performance of oxide TFTs. When a plasma process is introduced on the surface of an active layer during the PL process, and as the plasma power is increased, the TFT characteristics degrade, resulting in lower mobility and higher threshold voltage. Therefore, it is very important to form an interface using a minimized plasma process.

Effects of Die Deformation and Channel Angle on Deformation Behavior of Materials During Equal Channel Angular Pressing with Pure-Zr (순수 지르코늄의 ECAP공정에서 금형의 변형 및 채널각이 재료의 변형거동에 미치는 영향)

  • Gwon, Gi-Hwan;Chae, Su-Won;Gwon, Suk-In;Kim, Myeong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.11
    • /
    • pp.1751-1758
    • /
    • 2001
  • Among severe plastic deformation processes, ECAP has drawn much attention due to its advantages including ultra-fine grain size material production. In this paper, ECAP process with pure -Zirconium is investigated due to its applicability to nuclear reactors. The finite element method is employed to investigate the deformation behavior of materials during ECAP process. In particular, effects of process parameters such as die deformation and channel angles on the material behaviors have been investigated. Experimental studies have also been performed to verify the numerical results.

A Fluid Flow Numerical Study on the Design Factor of Inlet Distribution Channel for Flocculation/Sedimentation Basin (유동(流動) 수치해석(數値解析)을 이용한 응집·침전지 유입 분배수로 설계인자 연구)

  • Yoon, Jang-Ken;Kim, Jeong-Hyun;Oh, Jung-Woo;Ha, Eun-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.4
    • /
    • pp.337-342
    • /
    • 2000
  • In water treatment plants, open channel is used to distribute incoming flow to parallel treatment unit, such as flocculation basin and sedimentation basin. These control devices must be designed so that the incoming flow evenly distributed to the process unit. this is important in the view of optimizing process unit. In the recent past. significant insights into the sedimentation process have been developed. In this study, the 2-D computer program is developed to investigate fluid flow field and velocity vectors in flocculation sedimentation inlet distribution weir and calculate flow rates in each inlet weir. The specific purpose of this study is to analyze physical design factors, such as now rates, shape of channel, tapered angle in tapered type channel and main channel width.

  • PDF

An Implementation of Efficient OTC(Over-The-Cell) Channel Router (효과적인 OTC 채널 라우터의 구현)

  • Jang, Seung-Kew;Chang, Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.591-593
    • /
    • 1998
  • As evolution of the process technology, we proposed the Over-The-Cell channel routing algorithm for the advanced three-layer process. The proposed algorithm simplifies the channel routing problem, and then makes use of Simulated Annealing Technique to converge at global optimal solution. Also, we proposed a new method to remove the cyclic vertical constraints which are known to be the hardest element in the channel routing problem and a way to detect the local minimal solution and escape from it successfully.

  • PDF

A study on process parameter extraction and device characteristics of nMOSFET using DTC method (DTC방법을 사용한 nMOSFET의 공정파라메터 추출 및 소자특성에 관한 연구)

  • 이철인;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.8
    • /
    • pp.799-805
    • /
    • 1996
  • In short channel MOSFET, it is very important to establish optimal process conditions because of variation of device characteristics due to the process parameters. In this paper, we used process simulator and device characteristics caused by process parameter variation. From this simulation, it has been ' derived to the dependence relations between process parameters and device characteristics. The experimental result of fabricated short channel device according to the optimal process parameters demonstrate good device characteristics.

  • PDF

Process Variation on Arch-structured Gate Stacked Array 3-D NAND Flash Memory

  • Baek, Myung-Hyun;Kim, Do-Bin;Kim, Seunghyun;Lee, Sang-Ho;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.260-264
    • /
    • 2017
  • Process variation effect on arch-structured gate stacked array (GSTAR) 3-D NAND flash is investigated. In case of arch-structured GSTAR, a shape of the arch channel is depending on an alignment of photo-lithography. Channel width fluctuates according to the channel hole alignment. When a shape of channel exceeds semicircle, channel width becomes longer, increasing drain current. However, electric field concentration on tunnel oxide decreases because less electric flux converges into a larger surface of tunnel oxide. Therefore, program efficiency is dependent on the process variation. Meanwhile, a radius of channel holes near the bottom side become smaller due to an etch slope. It also affects program efficiency as well as channel width. Larger hole radius has an advantage of higher drain current, but causes degradation of program speed.

Characteristics of Fabricated Devices and Process Parameter Extraction by DTC (DTC에 의한 공정 파라메터 추출 및 제작된 소자의 특성)

  • 서용진;이철인;최현식;김태형;최동진;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.29-34
    • /
    • 1993
  • In this paper, we used one-dimensional process simulator, SUPREM-II, and two-dimensional device simulator, MINIMOS 4.0 to extract optimal process parameter that can minimize degradation of device characteristics caused by process parameter variation in the case of short channel nMOSFET and pMOSFET device. From this simulation, we have derieved the relationship between process parameter and device characteristics. Here we have presented a method to extract process parameters from design trend curve(DTC) obtained by process and device simulations. We parameters to verify the validity of the DTC method. The experimental result of 0.8 $\mu\textrm{m}$ channel length devices that have been fabricated with optimal that reduces short channel effects, that is, good drain current-voltage characteristics, low body effects and threshold voltage of 1.0 V, high punchthrough and breakdown voltage of 12 V, low subthreshold swing(S.S) values of 105 mV/decade.

  • PDF

Computational Fluid Dynamics Study of Channel Geometric Effect for Fischer-Tropsch Microchannel Reactor (전산유체역학을 이용한 Fischer-Tropsch 마이크로채널 반응기의 채널 구조 영향 분석)

  • Na, Jonggeol;Jung, Ikhwan;Kshetrimayum, Krishnadash S.;Park, Seongho;Park, Chansaem;Han, Chonghun
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.826-833
    • /
    • 2014
  • Driven by both environmental and economic reasons, the development of small to medium scale GTL(gas-to-liquid) process for offshore applications and for utilizing other stranded or associated gas has recently been studied increasingly. Microchannel GTL reactors have been prefrered over the conventional GTL reactors for such applications, due to its compactness, and additional advantages of small heat and mass transfer distance desired for high heat transfer performance and reactor conversion. In this work, multi-microchannel reactor was simulated by using commercial CFD code, ANSYS FLUENT, to study the geometric effect of the microchannels on the heat transfer phenomena. A heat generation curve was first calculated by modeling a Fischer-Tropsch reaction in a single-microchannel reactor model using Matlab-ASPEN integration platform. The calculated heat generation curve was implemented to the CFD model. Four design variables based on the microchannel geometry namely coolant channel width, coolant channel height, coolant channel to process channel distance, and coolant channel to coolant channel distance, were selected for calculating three dependent variables namely, heat flux, maximum temperature of coolant channel, and maximum temperature of process channel. The simulation results were visualized to understand the effects of the design variables on the dependent variables. Heat flux and maximum temperature of cooling channel and process channel were found to be increasing when coolant channel width and height were decreased. Coolant channel to process channel distance was found to have no effect on the heat transfer phenomena. Finally, total heat flux was found to be increasing and maximum coolant channel temperature to be decreasing when coolant channel to coolant channel distance was decreased. Using the qualitative trend revealed from the present study, an appropriate process channel and coolant channel geometry along with the distance between the adjacent channels can be recommended for a microchannel reactor that meet a desired reactor performance on heat transfer phenomena and hence reactor conversion of a Fischer-Tropsch microchannel reactor.

Electrical Characteristics of Solution Processed DAL TFT with Various Mol concentration of Front channel

  • Kim, Hyunki;Choi, Byoungdeog
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.211.2-211.2
    • /
    • 2015
  • In order to investigate the effect of front channel in DAL (dual active layer) TFT (thin film transistor), we successfully fabricated DAL TFT composed of ITZO and IGZO as active layer using the solution process. In this structure, ITZO and IGZO active layer were used as front and back channel, respectively. The front channel was changed from 0.05 to 0.2 M at fixed 0.3 M IGZO of back channel. When the mol concentration of front channel was increased, the threshold voltage (VTH) was increased from 2.0 to -11.9 V and off current also was increased from 10-12 to 10-11. This phenomenon is due to increasing the carrier concentration by increasing the volume of the front channel. The saturation mobility of DAL TFT with 0.05, 0.1, and 0.2 M ITZO were 0.45, 4.3, and $0.65cm2/V{\cdot}s$. Even though 0.2 M ITZO has higher carrier concentration than 0.05 and 0.1 M ITZO, the 0.1 M ITZO/0.3 M IGZO DAL TFT has the highest saturation mobility. This is due to channel defect such as pores and pin-holes. These defect sites were created during deposition process by solvent evaporation. Due to these defect sites, the 0.1 M ITZO/0.3 M IGZO DAL TFT shows the higher saturation mobility than that of DAL TFT with front channel of 0.2 M ITZO.

  • PDF

Effect of rubber forming process parameters on channel depth of metallic bipolar plates

  • Jin, Chul-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2017
  • In this study, bipolar plates in fuel cells are formed using rubber forming process. The effects of important parameters in rubber forming such as hardness and thickness of rubber pad, speed and pressure of punch that compress blank, and physical property of materials on the channel depth were analyzed. In the soft material sheet Al1050, deeper channels are formed than in materials STS304 and Ti-G5. Formed channel depth was increased when hardness of rubber pad was lower, thickness of rubber pad was high, and speed and pressure of punch were high. It was found the deepest channel was achieved when forming process condition was set with punch speed and pressure at 30 mm/s and 55 MPa, respectively using rubber pad having hardness Shore A 20 and thickness 60 mm. The channel depths of bipolar plates formed with Al1050, STS304 and Ti-G5 under the above process condition were 0.453, 0.307, and 0.270 mm, respectively. There were no defects such as wrinkle, distortion, and crack found from formed bipolar plates.