• Title/Summary/Keyword: Probiotic agents

Search Result 31, Processing Time 0.026 seconds

Characterization of Lactobacillus fermentum PL9988 Isolated from Healthy Elderly Korean in a Longevity Village

  • Park, Jong-Su;Shin, Eunju;Hong, Hyunjin;Shin, Hyun-Jung;Cho, Young-Hoon;Ahn, Ki-Hyun;Paek, Kyungsoo;Lee, Yeonhee
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.9
    • /
    • pp.1510-1518
    • /
    • 2015
  • In this work, we wanted to develop a probiotic from famous longevity villages in Korea. We visited eight longevity villages in Korea to collect fecal samples from healthy adults who were aged above 80 years and had regular bowel movements, and isolated lactic-acid-producing bacteria from the samples. Isolated colonies that appeared on MRS agar containing bromophenol blue were identified by means of 16S rRNA sequencing, and 102 of the isolates were identified as lactic-acid-producing bacteria (18 species). Lactobacillus fermentum was the most frequently found species. Eight isolates were selected on the basis of their ability to inhibit the growth of six intestinal pathogens (Escherichia coli O157:H7, Salmonella enterica subsp. enterica Typhimurium, Salmonella enterica subsp. enterica Enteritidis, Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes) and their susceptibility to 15 antimicrobial agents. Among these eight isolates, four Lactobacillus fermentum isolates were found not to produce any harmful enzymes or metabolites. Among them, Lactobacillus fermentum isolate no. 24 showed the strongest binding to intestinal epithelial cells, the highest immune-enhancing activity, anti-inflammation activity, and anti-oxidation activity as well as the highest survival rates in the presence of artificial gastric juice and bile solution. This isolate, designated Lactobacillus fermentum PL9988, has all the characteristics for a good probiotic.

Potential Probiotic Properties of Exopolysaccharide Producing Lactic Acid Bacteria Isolated from Fermented Soybean Product (장류유래 Exopolysaccharide 생성 유산균의 잠재적 Probiotic 특성)

  • Ahn, Yu-Jin;Choi, Hye-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.5
    • /
    • pp.749-755
    • /
    • 2014
  • Exopolysaccharides (EPSs) have been widely used in the food industry as viscofying, stabilizing, and emulsifying agents as well as in the pharmaceutical industry for their immunomodulatory, anti-tumor, and anti-inflammatory effects. A total of 458 lactic acid bacteria (LAB) strains isolated from several kinds of soybean pastes were screened for the production of homo-EPS (HoPS). LAB isolates were primarily screened using thin layer chromatography (TLC) and further screened polymerase chain reaction (PCR) targeting genes involved in HoPS production. Six LAB isolates producing high amounts of HoPS were identified by TLC. Among these isolates, glucansucrase gene was amplified in two strains (JSA57, JSB22), whereas the fructansucrase gene was detected in three strains (JSA57, JSB22, JSB66). After isolating the strains, their morphological characteristics and 16S rDNA sequences were determined. Six species were identified as L. alimentarius HSB15, L. plantarum JSA22, L. pentosus JSA57, L. brevis JSB22, L. alimentarius JSB66, and L. parabrevis JSB89. To evaluate the potential probiotic properties of these LAB, their survival rates against a simulated intestinal environment were determined. After 2 hr of incubation in artificial gastric juice, survival rates of JSA57, JSB90, JSB22, and JSB66 were all greater than 50%. After 2 hr of incubation in bile juice, viable cell count of JSB22 was similar with initial vial cell counts. Growth of the six LAB was screened in arabino-oligosaccharide (AOS)-containing MRS broth. Results showed that growth of the isolates selectively increased after culture in AOS-containing media. Strain JSB22 (6 hr), JSB66 (6 hr), HSB15 (20 hr), and JSA22 (29 hr) showed maximum growth rate. Especially, JSB22 showed the highest growth rate. These results suggest that EPS-producing LAB isolated from Deonjang could be applied as synbiotics.

Emission Characterization of Ammonia Produced from Swine Nightsoil (돈분뇨로부터 발생하는 암모니아의 배출 특성)

  • Lee, Eun-Young;Lee, So-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.38 no.3
    • /
    • pp.308-314
    • /
    • 2010
  • This study was conducted to investigate the characteristics and concentrations of ammonia produced from the livestock swine nightsoil treated with or without the livestock - environment improving agents. Odor generating device made of acryl was made by volume of 96 L to sample the ammonia odor. When swine night soil was placed in the device, concentration of ammonia averaged out at about 23.4 ppmv and ranged from 16 ppmv to 40 ppmv. Removal efficiencies of them showed 50% to 90% as compared to initial level before spraying, when the spray type agents were used immediately after they purchased. The persistence of the efficiency was retained for first two days. Among the agents, the natural deodorant showed the best efficiency of 87 to 99%. To evaluate the effects of 5 kinds of dietary probiotic powders, the experiments were conducted and based dietary treatments without antibiotics on growing piglets. In experiments, 60 piglets ($6.3{\pm}0.2\;kg$) were subjected to a 35-day feeding trial in which the effects of the dietary probiotic powder on the ammonia emission were compared. The ammonia gas emission was measured for every week. Ammonia emission from the swine nightsoil obtained from piglets supplemented with the probiotics power was lower than that of the nightsoil obtained from pigs in the control treatment (without probiotics). In ammonia removal efficiencies of the experimental groups, some products showed from 71% to 99% removal efficiencies throughout the entire period as compared to the control group. On the other hand, initial reduction of ammonia in some product was effective temporarily. After then, it did not show any reduction efficiency of ammonia.

Probiotics and Intestinal Health (유산균 Probiotics와 장내 건강)

  • Bang, Miseon;Lee, Sang Dae;Oh, Sejong
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.139-143
    • /
    • 2012
  • For human including newborn baby, the intestinal microbiota can play an important role in the development of the intestinal mucosa and in maintaining the balance of the immune cells. Important functions of the intestinal microbiota include the inhibition of the colonization of the intestine by potentially pathogenic microorganisms. Thus, the research of probiotics have been focused on the prevention and treatment of disorders associated with the gastrointestinal tract (GIT), including pathogen infection, traveler's diarrhea, antibiotic-associated diarrhea, and constipation. Probiotics have also been suggested as therapeutic agents against irritable bowel syndrome and inflammatory bowel diseases. An increasing amount of evidence from clinical studies suggests that they are effective in the prevention of atopic allergies and may have potential anti-carcinogenic effects. Until recent years many scientific research for this use has been based on empirical observations. Therefore, probiotics in the form of fermented milk products have been long part of attempts to maintain good health in world wide.

  • PDF

Whey Protein Concentrate, Pullulan, and Trehalose as Thermal Protective Agents for Increasing Viability of Lactobacillus plantarum Starter by Spray Drying

  • Sun, Haiyue;Hua, Xiaoman;Zhang, Minghao;Wang, Yu;Chen, Yiying;Zhang, Jing;Wang, Chao;Wang, Yuhua
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.118-131
    • /
    • 2020
  • It is necessary to add protective agents for protecting the probiotic viability in the preparation process of probiotics starter. In this study, we used whey protein concentrate (WPC), pullulan, trehalose, and sodium glutamate as the protective agent and optimized the proportion of protective agent and spray-drying parameters to achieve the best protective effect on Lactobacillus plantarum. Moreover, the viable counts of L. plantarum in starter stored at different temperatures (-20℃, 4℃, and 25℃) for 360 days were determined. According to response surface method (RSM), the optimal proportion of protective agent was 24.6 g/L WPC, 18.8 g/L pullulan, 16.7 g/L trehalose and 39.3 g/L sodium glutamate. The optimum spray-drying parameters were the ratio of bacteria to protective agents 3:1 (v: v), the feed flow rate 240 mL/h, and the inlet air temperature 115℃ through orthogonal test. Based on the above results, the viable counts of L. plantarum was 12.22±0.27 Log CFU/g and the survival rate arrived at 85.12%. The viable counts of L. plantarum stored at -20℃ was more than 1010 CFU/g after 200 days.

Risk and Protective Factors for Gastrointestinal Symptoms associated with Antibiotic Treatment in Children: A Population Study

  • Bau, Mario;Moretti, Alex;Bertoni, Elisabetta;Vazzoler, Valentino;Luini, Chiara;Agosti, Massimo;Salvatore, Silvia
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.23 no.1
    • /
    • pp.35-48
    • /
    • 2020
  • Purpose: Gastrointestinal symptoms are often related to antibiotic treatment. Their incidence, risk and protective conditions in children are not well defined and represent the aims of this study. Methods: We prospectively enrolled inpatient children submitted to antibiotic treatment. Indication, type, dose and duration of treatment, probiotic supplementation and gastrointestinal symptoms were recorded at recruitment, after two and four weeks. Antibiotic-associated diarrhea (AAD) was defined as the presence of at least 3 loose/liquid stools within 14 days from antibiotic onset. Results: AAD occurred in 59/289 (20.4%) of patients, with increased risk in children younger than 3 years (relative risk [RR]=4.25), in lower respiratory (RR=2.11) and urinary infections (RR=3.67), intravenous administration (RR=1.81) and previous AAD episodes (RR=1.87). Abdominal pain occurred in 27/289 (9.3%), particularly in children >6 years (RR=4.15), with previous abdominal pain (RR=7.2) or constipation (RR=4.06). Constipation was recorded in 23/289 (8.0%), with increased risk in children having surgery (RR=2.56) or previous constipation (RR=7.38). Probiotic supplementation significantly reduced AAD (RR=0.30) and abdominal pain (RR=0.36). Lactobacillus rhamnosus GG (LGG) and L. reuteri significantly reduced AAD (RR=0.37 and 0.35) and abdominal pain (RR=0.37 and 0.24). Conclusion: AAD occurred in 20.4% of children, with increased risk at younger age, lower respiratory and urinary tract infections, intravenous treatment and previous AAD. LGG and L. reuteri reduced both AAD and associated abdominal pain.

Clinical efficacy of L. plantarum, L. reuteri, and Ped. acidilactici probiotic combination in canine atopic dermatitis (개 아토피 피부염에서 3종 프로바이오틱스 복합제의 임상 효능 평가)

  • Hye-Kang Jung;Jae-Hun Kim;Jeseong Park;Yeonhee Kim;Minn Sohn;Chul Park
    • Korean Journal of Veterinary Service
    • /
    • v.47 no.1
    • /
    • pp.19-26
    • /
    • 2024
  • Canine atopic dermatitis (CAD) is an inflammatory and pruritic skin disease with a genetic predisposition, characterized by allergic sensitivity. It is known for its distinctive clinical features, including a high recurrence rate and chronic progression. To manage CAD, medications such as steroids and immunosuppressants are commonly used, but consideration should be given to the potential resistance and side effects associated with long-term use. In order to reduce these risks, various adjunctive factors are currently under consideration. One of these adjunctive agents, probiotics have shown effectiveness in regulating atopic dermatitis by modulating immune responses, as demonstrated in several recent studies. In this study, a substance combining three probiotics-L. plantarum, L. reuteri, and Ped. Acidilactici-was used in patients diagnosed with CAD, and its clinical effects and safety were evaluated. The trial involved four groups: a group receiving conventional treatment for atopic dermatitis (A), a group prescribed low-dose probiotics (B), a group prescribed high-dose probiotics (C), and a group prescribed topical probiotics (D). For assessment, the Canine Atopic Dermatitis Extent and Severity Index (CADESI), Trans-Epidermal Water Loss (TEWL) test, gut microbiome, and serum IgE test were conducted. As a result, the CAD severity index (CADESI-4) significantly decreased in the probiotics groups (B & C). In the serum total IgE test, the groups consuming probiotics showed a significant difference, while the group using topical probiotics (D) did not exhibit a significant change. Also, the TEWL test showed improved scores in the probiotics groups (B & C). Therefore, L. plantarum, L. reuteri, and Ped. Acidilactici probiotic combination could be considered as an effective adjunctive treatment, especially for atopic patients with moderate to severe skin lesions.

Antagonistic inhibitory effects of probiotics against pathogenic microorganisms in vitro (Probiotics의 병원성미생물에 대한 길항적 억제효과)

  • Yuk, Young Sam;Lee, Young ki;Kim, Ga-Yeon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.110-116
    • /
    • 2019
  • To investigate the antagonistic inhibitory effects in a mixed culture between probiotics and various pathogenic microorganisms, 140 probiotics were identified using a 16 rRNA sequencing phylogenetic analysis method, and various probiotics strains were isolated from Korean kimchi from January to December 2016. The antagonistic inhibition test of a mixed culture of four probiotics (Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus rhamnosus, and Lactobacillus reuteri) with excellent antimicrobial activity and six pathogenic microorganisms (Candida albicans, Salmonella Enteritidis, E. coli O157:H7, Shigella flexneri, Staphylococcus aureus, and Pseudomonas aeruginosa)showed that the growth of most probiotics strains increased normally after culture, but growth was inhibited almost completely in most pathogenic microorganisms, except for S. Enteritidis. This antagonistic inhibitory effect in vitro was attributed to the low pH of the lactic acid and organic acid produced during fermentation. As a result, four probiotics strains isolated from Korean Kimchi are very likely to be developed as therapeutic agents for female yeast infections and colon and skin care. In the future, these therapeutic agents will help improve public health related to probiotics.

Yogurt Production Using Exo-polysaccharide-producing Leuconostoc and Weissella Isolates from Kimchi (김치유래 exo-polysaccharide 생성능 Leuconostoc 및 Weissella균을 이용한 발효유 제조)

  • Min, Koung-Ah;Chung, Chang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.48 no.3
    • /
    • pp.231-240
    • /
    • 2016
  • The purpose of this study was to investigate the effect of exopolysaccharide (EPS)-producing Leuconostoc and Weissella isolates from kimchi as a probiotic starter and replacement for thickening agents such as pectin and gums in yogurt. Potential probiotic isolates were first screened for their acid and bile tolerance, and then evaluated for antimicrobial activity against Escherichia coli and Salmonella Typhimurium. When the selected Leuconostoc or Weissella isolates were co-inoculated in yogurt without a thickening agent, the yogurt with 4% sucrose produced lower syneresis values than the control and had higher EPS yields. The isolates were able to survive at a level of $10^6CFU/mL$ when incubated at $4^{\circ}C$ for 12 days. This study shows that EPS-producing Leuconostoc and Weissella strains have the potential to produce a synbiotic yogurt.

Inhibition Effect on Pathogenic Microbes and Antimicrobial Resistance of Probiotics (Probiotics의 병원성 미생물에 대한 억제효과와 항균제 내성)

  • Kim, Jae Soo;Yuk, Young Sam;Kim, Ga Yeon
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.294-300
    • /
    • 2019
  • To investigate the inhibition effect on pathogenic microbes and the antimicrobial resistance of probiotics, a total of 140 probiotics were isolated from 35 kinds of Korean commercially available Kimchi. Of those, L. plantarum was identified from 53 strains (37.9%), E. faecium from 27 strains (19.3%), and L. rhamnosus from 7 strains (5.0%) using 16S rRNA gene sequencing. Sixty nine strains (49.3%) showed overall antimicrobial activity against pathogenic microbes, namely S. Typhi, S. Enteritidis, E. coli O157:H7, S. flexneri, NAG Vibrio, Listeria monocytogenesis, Y. enterocolitica, S. aureus, S. pyogenes, G. vaginalis, C. albicans, and P. acne. The proportions of L. plantarum, E. faecium, and L. rhamnosus strains to pathogenic microbes were 75.5%, 40.7%, and 28.6%, respectively. In addition, a resistance test with 18 antimicrobial agents using a disk diffusion assay revealed a resistance incidence of 98.6% for nalidixic acid, 83.6% for streptomycin, 75.7% for gentamicin 73.6% for vancomycin, 72.1% for norfloxacin, and 67.9% for ciprofloxacin. In conclusion, L. plantarum, L. sakei, and E. faecium strains with various antimicrobial activities and broad antibiotic resistance are useful for treating diarrhea in long-term inpatients and for the alternative use for treating Candida species female vaginitis.