• Title/Summary/Keyword: Probe current control

Search Result 60, Processing Time 0.022 seconds

Conductive and Mechanical Properties Study of Ti-doped DLC (ta-C:Ti) Film on Semiconductor Probe through Taguchi Bobust Design (다구찌 강건 설계를 통한 반도체 Probe상 Ti 도핑된 DLC(ta-C:Ti) 코팅 막의 전도성 및 기계적 물성 연구)

  • Kim, Do-young;Shin, Jun-ki;Jang, Young-Jun;Kim, Jongkuk
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.274-280
    • /
    • 2022
  • There is a problem that semiconductor probe pin has a short lifespan. In order to solve this problem, Ti having excellent conductivity was doped to tetrahedral amorphous carbon (ta-C) having excellent hardness and abrasion resistance. This experiment was planned through the Taguchi robust design to determine the effect of the control factor of the ta-C:Ti coating film. The effect and contribution of control factors such as Unbalanced Magnetron Sputter(UBM) discharge current, arc discharge current, temperature, and bias voltage on ta-C:Ti characteristics were analyzed from the perspective of electrical and mechanical characteristics. The UBM discharge current was set to 4, 6, and 8 A. The main control factor of thickness and resistance is the UBM discharge current, and the thickness increased and the resistance decreased as the current increased. The decrease in resistance is due to the increase in the Ti content of the ta-C:Ti coating film. The arc discharge current was set to 60, 80, and 100 A. The main control factor of hardness and wear is the arc discharge current, and as the current rises, the hardness increases and the wear area decreases. This is due to the increased ta-C content of the ta-C:Ti coating film. Since resistance and wear are important for Probe Pin, the optimal level is set from the perspective of resistance and wear and a confirmation experiment is conducted.

On the deduction of electron temperature by various electric probes in RF plasma (다양한 전기탐침을 이용한 RF 플라즈마 전자온도의 측정)

  • Seo, V.J.;Woo, H.J.;Choe, G.S.;You, H.J.;Lho, T.;Chung, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1568-1569
    • /
    • 2006
  • An electric probe is a conductor inserted into the plasma, by which plasma density and electron temperature can be deduced from the collected current (I) versus applied voltage (V) to the probe. In RF plasma the I-V characteristics of electric probe is distorted due to the RF fluctuation of plasma potential, so that it is hard to measure the real plasma parameters, especially the electron temperature. To eliminate the RF fluctuation, several compensation methods are developed such as RF compensation probe, peak-to-peak method, asymmetric double probe. By comparing proposed methods, a suitable method is to be introduced in determining electron temperatures in RF plasma.

  • PDF

Realization for Each Element for capturing image in Scanning Electron Microscopy (주사 전자 현미경에서 영상 획득에 필요한 구성 요소 구현)

  • Lim, Sun-Jong;Lee, Chan-Hong
    • Laser Solutions
    • /
    • v.12 no.2
    • /
    • pp.26-30
    • /
    • 2009
  • Scanning Electron Microscopy (SEM) includes high voltage generator, electron gun, column, secondary electron detector, scan coil system and image grabber. Column includes electron lenses (condenser lens and objective lens). Condenser lens generates fringe field, makes focal length and control spot size. Focal length represents property of lens. Objective lens control focus. Most of the electrons emitted from the filament, are captured by the anode. The portion of the electron current that leaves the gun through the hole in the anode is called the beam current. Electron beam probe is called the focused beam on the specimen. Because of the lens and aperture, the probe current becomes smaller than the beam current. It generate various signals(backscattered electron, secondary electron) in an interaction with the specimen atoms. In this paper, we describe the result of research to develop the core elements for low-resolution SEM.

  • PDF

Understanding of RF Impedance Matching System Using VI-Probe

  • Lee, Ji Ha;Park, Hyun Keun;Lee, Jungsoo;Hong, Snag Jeen
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.3
    • /
    • pp.43-48
    • /
    • 2020
  • The demand for stable plasma has been on the rise because of the increased delivery power amount in the chamber for improving productivity, and fast and accurate plasma impedance matching become a crucial performance measure for radio frequency (RF) power system in semiconductor manufacturing equipment. In this paper, the overall impedance matching was understood, and voltage and current values were extracted with voltage - current (VI) probe to measure plasma impedance in real-time. Actual matching data were analyzed to derive calibration coefficient for V and I measurements to understand the characteristics of VI probe, and we demonstrated the tendency of RF impedance matching according to changes in load impedance. This preliminary empirical research can contribute to fast RF matching as well as advanced equipment control for the next level of detailed investigation on embedded system based-RF matching controller.

Measurements of Mixture Strength Using Spark Plug (스파크 플러그를 이용한 혼합기 농도 측정)

  • 조상현;임명택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.18-25
    • /
    • 2000
  • Ion current in an S.I engine cylinder is measured with the spark plug as a probe. The peak values are confirmed to show a fair correlation with local air-fuel ration and engine speed which implies that the ion current measured at the spark plug may provide a signal for the local mixture strength which is the key parameter in precise fuel control for future engines especially of gasoline direct-injected lean burn engines.

  • PDF

Measurement of the ICRH antenna phasing using antenna strap probe based diagnostic system in EAST tokamak

  • Liu, L.N.;Liang, Q.C.;Yang, H.;Zhang, X.J.;Yuan, S.;Mao, Y.Z.;Zhang, W.;Zhu, G.H.;Wang, L.;Qin, C.M.;Zhao, Y.P.;Cheng, Y.;Zhang, K.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3614-3619
    • /
    • 2022
  • To operate the ion cyclotron resonance heating (ICRH) antennas in a better heating state and produce relatively low impurities, it is necessary to control the antenna spectrum by changing the antenna phasing. As the electrical length of the antenna feeding transmission lines is changing as a matter of the standing wave pattern at the ceramic supports, 90° elbows, T-connectors and antenna loops, we chose to measure the current at the grounding points of the antenna loops by antenna strap probe. The voltage drops along a small, several millimeter-long paths at the end of the antenna loops give a signal that is proportional to the current in the antenna loop. Through the simulation of the antenna strap probe and the actual measurement of the antenna phasing under vacuum conditions, the reliability of the antenna strap probe based diagnostic system have been successfully proved. Moreover, this system was successfully applied to the ICRH daily experiments in the spring of 2021. In the near future, the active real-time feedback control of the antenna phasing system will be developed based on this diagnostic system in the EAST tokamak.

Stability evaluation of a proportional valve controller for forward-reverse power shuttle control of agricultural tractors

  • Jeon, Hyeon-Ho;Kim, Taek-Jin;Kim, Wan-Soo;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Hyeon;Kim, Yong-Joo
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.597-606
    • /
    • 2021
  • Due to the characteristics of the farmland in Korea, forward and reverse shift is the most used. The fatigue of farmers is caused by forward and reverse shifting with a manual transmission. Therefore, it is necessary to improve the convenience of forward and backward shifting. This study was a basic study on the development of a current control system for forward and reverse shifting of agricultural tractors using proportional control valves and a controller. A test bench was fabricated to evaluate the current control accuracy of the control system, and the stability of the controller was evaluated through CPU (central processing unit) load measurements. A controller was selected to evaluate the stability of the proportional valve controller. The stability evaluation was performed by comparing and analyzing the command current of the controller and the actual current measured. The command current was measured using a CAN (controller area network) communication device and DAQ (data acquisition). The actual current was measured with a current probe and an oscilloscope. The control system and stability evaluation was performed by measuring the CPU load on the controller during control operations. The average load factor was 12.27%, and when 5 tasks were applied, it was shown to be 70.65%. This figure was lower than the CPU limit of 74.34%, when 5 tasks were applied and was judged to be a stable system.

Stator winding faults diagnosis system of induction motor using LabVIEW (LabVIEW를 이용한 유도전동기 고정자 권선 고장진단시스템)

  • Song, Myung-Hyun;Park, Kyu-Nam;Lee, Tae-Hun;Han, Dong-Gi;Park, Kyung-Han
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2658-2660
    • /
    • 2005
  • This paper presents a stator winding fault diagnosis technique of induction motor on the PC - based virtual instrumentation system designed using the graphical programming language LabVIEW. This method collects the 3-phase current signals using the current probe amplifier and PXI/DAQ system then the preprocessing removes the noise using LPF, after then this method transforms the stator current to Park's vector and obtains the each Park's Vector pattern and detects stator winding fault by comparing the obtained faulted pattern with the healthy pattern. This proposed LabVIEW based diagnosis system is applied to the 3 phase 1 hp induction motor and obtained the reasonable results under no load condition. The test results give us the possibility a simple and realistic on-line winding fault diagnosis system.

  • PDF

A Study on Gene Detection using Non-labeling DNA

  • Choi Yong-Sung;Lee Kyung-Sup;Kwon Young-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.10
    • /
    • pp.960-965
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip using microfabrication technology. At first, we fabricated a high integration type DNA chip array by lithography technology. Several probe DNAs consisting of thiol group at their 5-end were immobilized on the gold electrodes. Then target DNAs were hybridized and reacted. Cyclic voltammetry showed a difference between target DNA and control DNA in the anodic peak current values. Therefore, it is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes.