• Title/Summary/Keyword: Printing technique

Search Result 371, Processing Time 0.027 seconds

The Manufacture of Custom Made 3D Titanium Implant for Skull Reconstruction

  • Cho, Hyung Rok;Yun, In Sik;Shim, Kyu Won;Roh, Tai Suk;Kim, Yong Oock
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.13-15
    • /
    • 2014
  • Nowadays, with advanced 3D printing techniques, the custom-made implant can be manufactured for the patient. Especially in skull reconstruction, it is difficult to design the implant due to complicated geometry. In large defect, an autograft is inappropriate to cover the defect due to donor morbidity. We present the process of manufacturing the 3D custom-made implant for skull reconstruction. There was one patient with skull defect repaired using custom-made 3D titanium implant in the plastic and reconstructive surgery department. The patient had defect of the left parieto-temporal area after craniectomy due to traumatic subdural hematoma. Custom-made 3D titanium implants were manufactured by Medyssey Co., Ltd. using 3D CT data, Mimics software and an EBM (Electron Beam Melting) machine. The engineer and surgeon reviewed several different designs and simulated a mock surgery on 3D skull model. During the operation, the custom-made implant was fit to the defect properly without dead space. The operative site healed without any specific complications. In skull reconstruction, autograft has been the treatment of choice. However, it is not always available and depends on the size of defect and donor morbidity. As 3D printing technique has been advanced, it is useful to manufacture custom-made implant for skull reconstruction.

Study on the Hawaiian Bark Cloth Kapa (하와이 목질의복(木質衣服)(Bark Cloth) KAPA에 대한 연구(硏究))

  • Park, Meeg-Nee
    • Journal of the Korean Society of Costume
    • /
    • v.17
    • /
    • pp.137-148
    • /
    • 1991
  • The use of bark cloth, made of the inner bark of certain trees, was widespread along tropical zones from the Africa to the Hawaii encompassing the globe. They include Malaysia, Indonesia, New Guinea, Polynesian Islands and South America. Among them the Hawaiian bark cloth, named Kapa(pronounced as tapa) was rated as the best quality and most admired. It has variety in designs and colors as well as the most sophistcated production methods. The distinct processes of kapa making are composed of two stages. The first is called first beating and it is a preparatory stage to beat the sea-water soaked bast. It was done with a round beater on a stone anvil. The second beating process was carried out with the squared beater and wooden anvil. The strips from the first beating was soaked again in the water and then beaten lightly to break up fibers. The craftmen laid a bundle of strips over the anvil and beat it into pieces of kapa. The second beater of Hawaii was the most characteristic one among bark cloth producing countries. On their surfaces were the engraved patterns, which were creation of theirs. These distinguished designs enabled them to produce the kapa with the thinner and finer texture and an elaboration of impressed designs known as "watermaks". The Hawaiian culture was self-sufficient one : Everything they used was of their own creation until 19th century. Among their inventions of printing designs on kapa are three most important and distinguished processes. They are the overlaying, the cord snapping and the block printing techniques. Their inventiveness as well as self sufficient environment made it possible to develop their fine art of the kapa making. It is said that the mass producing and cheap western technology of loom forced them to gradually abandon their traditional art and as a result this fine and valuable legacy of Hawaiian traditional kapa making technique is all but disappeared. However it is encouraging and heart warming to find that some of the people as well as specialized researchers pined together to form a group to try to reproduce the old kapa and study the traditional art. They consider the kapa as an expression of the ethnic identity with Hawaii's heritage as well as valuable art of human history.

  • PDF

Fabrication of Micron-sized Organic Field Effect Transistors (마이크로미터 크기의 유기 전계 효과 트랜지스터 제작)

  • Park, Sung-Chan;Huh, Jung-Hwan;Kim, Gyu-Tae;Ha, Jeong-Sook
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this study, we report on the novel lithographic patterning method to fabricate organic thin film field effect transistors (OTFTs) based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30 nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce $Al_2O_3$ film grown via atomic layer deposition method onto pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated micron sized pentacene FETs and measured their electrical characteristics.

Matching Technology Between Nip Roll Characteristics and Quality of Print Pattern in Roll-to-Roll Printed Electronics Systems (롤투롤 전자인쇄 시스템에서 Nip Roll 의 특성에 따른 인쇄 패턴의 품질에 대한 매칭기술 연구)

  • Choi, Jea-Won;Shin, Kee-Hyun;Lee, Chang-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.2
    • /
    • pp.173-178
    • /
    • 2012
  • Currently, active research is being performed on printing of electronic devices such as RFID devices, flexible displays, solar cells, and e-paper. This technique has several advantages over existing technologies such as lithography and etching. In particular, RFID devices, flexible displays, solar cells, and e-paper require flexibility and a mass production system. Thus, attention is being focused on the roll-to-roll process. High quality should be guaranteed in the roll-to-roll printed electronics systems, and good thickness and roughness qualities must be ensured. Experimental design was applied to this problem to analyze the main effects and interaction effects of various factors. Matching technology between the nip roll characteristics and the quality of the print pattern in roll-to-roll printed electronics systems was proposed to improve the printing quality.

Studies on the Quality Improvement of Printing Paper by Process Controlling of DIP and TMP (탈묵펄프 및 열기계펄프의 공정 조절을 통한 인쇄용지의 품질향상 연구)

  • Hwang, Sung-Jun;Lim, Jong-Keun;Kim, Hyoung-Jin;Chung, Sung-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.5-14
    • /
    • 2015
  • Recently, the use of wood resources has been limited due to global environmental change, like global warming and desertification. It is very critical in Korea's paper industries because lots of virgin pulp are dependant on direct import from abroad for printing grade of paper. In this work, the alternatively best available technique for reducing the import amounts of BKP (bleached Kraft pulp) was considered by mixing DIP (deinked pulp) and TMP (thermomechanical pulp) for the manufacture of high quality paper. Generally known, the sheet prepared from fibrous raw materials of DIP and TMP has lower strength and optical properties than that prepared from BKP. This study was aimed to improve the sheet quality by using DIP and TMP. 4 kinds of polyelectrolytes were approached to find out the best effects on physical strength and optical brightness improvements, and high retention behaviors with GCC (ground calcium carbonate). In conclusion, amphoteric PAM with 1,000,000 molecular weight (g/mol) and 0.5 charge density (meq/g) was best for the improvement of strength properties with the mixture of DIP and TMP. GCC retention rate was also the highest with cationic-PAM of above 2,000,000 molecular weight (g/mol) and about 2.0-3.0 charge density (meq/g) of strengthening agent.

Fabrication of field emitters using a filtration-taping-transfer method

  • Song, Ye-Nan;Shin, Dong-Hoon;Sun, Yuning;Shin, Ji-Hong;Lee, Cheol-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.466-466
    • /
    • 2011
  • There have been several methods to fabricate carbon nanotube (CNT) emitters, which include as-grown, spraying, screen-printing, electrophoresis and bonding methods. Unfortunately, these techniques generally suffer from two main problems. One is a weak mechanical adhesion between CNTs and the cathode. The as-grown, spraying and electrophoresis methods show a weak mechanical adhesion between CNTs and the cathodes, which induces CNT emitters pulled out under a high electric field. The other is a severe degradation of the CNT tip due to organic binders used in the fabrication process. The screen-printing method which is widely used to fabricate CNT emitters generally shows a critical degradation of CNT emitters caused by the organic binder. Such kinds of problems induce a short lifetime of the CNT field emitters which may limit their practical applications. Therefore, a robust CNT emitter which has the strong mechanical adhesion and no degradation is still a great challenge. Here, we introduce a simple and effective technique for fabrication of CNT field emitter, namely filtration-taping-transfer method. The CNT emitters fabricated by the filtration-taping-transfer method show the low turn-on electric fields, the high emission current, good uniformity and good stability. The enhanced emission performance of the CNT emitters is mainly attributed to high emission sites on the emitter area, and to good ohmic contact and strong mechanical adhesion between the emitters and cathodes. The CNT emitters using a simple and effective fabrication method can be applied for various field emission applications such as field emission displays, lamps, e-beam sources, and x-ray sources. The detail fabrication process will be covered at the poster.

  • PDF

Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD/CAM and conventional method

  • Reeponmaha, Tanapon;Angwaravong, Onauma;Angwarawong, Thidarat
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.218-224
    • /
    • 2020
  • PURPOSE. The objectives of this study were to evaluate the fracture strength and fracture patterns of provisional crowns fabricated from different materials and techniques after receiving stress from a simulated oral condition. MATERIALS AND METHODS. A monomethacrylate-based resin (Unifast Trad) and a bis-acryl-based (Protemp 4) resin were used to fabricate provisional crowns using conventional direct technique. A milled monomethacrylate resin (Brylic Solid) and a 3D-printed bis-acrylate resin (Freeprint Temp) were chosen to fabricate provisional crowns using the CAD/CAM process. All cemented provisional crowns (n=10/group) were subjected to thermal cycling (5,000 cycles at 5°-55℃) and cyclic occlusal load (100 N at 4 Hz for 100,000 cycles). Maximum force at fracture was tested using a universal testing machine. RESULTS. Maximum force at fracture (mean ± SD, N) of each group was 657.87 ± 82.84 for Unifast Trad, 1125.94 ± 168.07 for Protemp4, 953.60 ± 58.88 for Brylic Solid, and 1004.19 ± 122.18 for Freeprint Temp. One-way ANOVA with Tamhane post hoc test showed that the fracture strength of Unifast Trad was statistically significantly lower than others (P<.01). No statistically significant difference was noted among other groups. For failure pattern analysis, Unifast Trad and Brylic Solid showed less damage than Protemp 4 and Freeprint Temp groups. CONCLUSION. Provisional crowns fabricated using the CAD/CAM process and the conventionally fabricated bis-acryl resins exhibited significant higher fracture strength compared to conventionally fabricated monomethacrylate resins after the aging regimen. Therefore, CAD/CAM milling and 3D printing of provisional restorations may be good alternatives for long term provisionalization.

Marginal and internal fit of 3D printed provisional crowns according to build directions

  • Ryu, Ji-Eun;Kim, Yu-Lee;Kong, Hyun-Jun;Chang, Hoon-Sang;Jung, Ji-Hye
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.225-232
    • /
    • 2020
  • PURPOSE. This study aimed to fabricate provisional crowns at varying build directions using the digital light processing (DLP)-based 3D printing and evaluate the marginal and internal fit of the provisional crowns using the silicone replica technique (SRT). MATERIALS AND METHODS. The prepared resin tooth was scanned and a single crown was designed using computer-aided design (CAD) software. Provisional crowns were printed using a DLP-based 3D printer at 6 directions (120°, 135°, 150°, 180°, 210°, 225°) with 10 crowns in each direction. In total, sixty crowns were printed. To measure the marginal and internal fit, a silicone replica was fabricated and the thickness of the silicone impression material was measured using a digital microscope. Sixteen reference points were set and divided into the following 4 groups: marginal gap (MG), cervical gap (CG), axial gap (AG), and occlusal gap (OG). The measurements were statistically analyzed using one-way ANOVA and Dunnett T3. RESULTS. MG, CG, and OG were significantly different by build angle groups (P<.05). The MG and CG were significantly larger in the 120° group than in other groups. OG was the smallest in the 150° and 180° and the largest in the 120° and 135° groups. CONCLUSION. The marginal and internal fit of the 3D-printed provisional crowns can vary depending on the build angle and the best fit was achieved with build angles of 150° and 180°.

Mechanical Properties of PVB 3D Printed Output Fumigated with Ethanol (에탄올 훈증처리한 3D 프린팅 PVB 출력물의 기계적 특성)

  • Kang, Eun-Young;Lim, Ji-Ho;Choi, Seunggon;Mun, Jong Wook;Lee, Yu Kyung;Lee, Sun Kon;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.369-375
    • /
    • 2020
  • FDM 3D printing structures have rough surfaces and require post-treatment to improve the properties. Fumigation is a representative technique for removing surface unevenness. Surface treatment by fumigation proceeds by dissolving the surface of the protruding structure using a vaporized solvent. In this study, 3D printed PVB outputs are surface-treated with ethyl-alcohol fumigation. As the fumigation time increases, the surface flattens as ethanol dissolves the mountains on the surface of PVB and the surface valleys are filled with dissolved PVB. Through the fumigation process, the mechanical strength tends to decrease, and deformation rate increases. Ethanol vapor permeates into PVB, widening the distance between chains and resulting in weak bonding strength between chains. In order to confirm the effect of fumigation only, an annealing process is performed at 80 ℃ for 1, 5, 10, 30, and 50 minutes and the results of the fumigation are compared.

A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer (FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구)

  • Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.