Browse > Article
http://dx.doi.org/10.5757/JKVS.2011.20.1.063

Fabrication of Micron-sized Organic Field Effect Transistors  

Park, Sung-Chan (Department of Chemical and Biological Engineering, Korea University)
Huh, Jung-Hwan (School of Electrical Engineering, Korea University)
Kim, Gyu-Tae (School of Electrical Engineering, Korea University)
Ha, Jeong-Sook (Department of Chemical and Biological Engineering, Korea University)
Publication Information
Journal of the Korean Vacuum Society / v.20, no.1, 2011 , pp. 63-69 More about this Journal
Abstract
In this study, we report on the novel lithographic patterning method to fabricate organic thin film field effect transistors (OTFTs) based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30 nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce $Al_2O_3$ film grown via atomic layer deposition method onto pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated micron sized pentacene FETs and measured their electrical characteristics.
Keywords
Pentacene; OFET; Lithography; Atomic layer deposition technique; $Al_2O_3$ passivation layer;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 X. -H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8, 718 (2007).   DOI
2 J. B. Koo, C. H. Ku, S. C. Lim, S. H. Kim, and J. H. Lee, Appl. Phys. Lett. 90, 133503 (2007).   DOI
3 H. Jeon, K. Shin, C. Yang, C. E. Park, and S. -H. K. Park, Appl. Phys. Lett. 93, 163304 (2008).   DOI   ScienceOn
4 M. Endo, Y. Tani, M. Sasago, and N. Nomur, J. Electrochem. Soc. 136, 2615 (1989).   DOI
5 J. Yamamoto, S. -I. Uchino, T. Hattori, T. Yoshimura, and F. Murai, Jpn. J. Appl. Phys. 35, 6511 (1996).   DOI
6 I. Yagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 86, 103502 (2005).   DOI
7 J. W. Kim, Y. M. Lee, and Y. Park, J. Korean Vac. Soc. 17, 394 (2008).   과학기술학회마을   DOI
8 A. Papadimitratos, A. Amassian, A. S. Killampalli, J. L. Mack, G. G. Milliaras, and J. R. Engstrom, Appl. Phys. A 95, 29 (2009).   DOI
9 C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).   DOI
10 R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, Mater. Today 9, 32 (2006).
11 S. R. Forrest, Nature 428, 911 (2004).   DOI
12 A. Blümel, A. Klug, S. Eder, U. Scherf, E. Moderegger, and E. J. W. List, Org. Electron. 8, 389 (2007).   DOI
13 D. A. Serban, P. Greco, S. Melinte, A. Vlad, C. A. Dutu, S. Zacchini, M. C. Iapalucci, F. Biscarini, and M. Cavallini, Small 5, 1117 (2009).
14 K. S. Kim, Y. H. Kim, J. In. Han, K. N. Choi, S. K. Kwak, D. S. Kim, and K. S. Chung, J. Kor. Vac. Soc. 17, 435 (2008)   과학기술학회마을   DOI
15 J. -H. Kwon, S. -I. Shin, J. Choi, M. -H. Chung, H. Kang, and B. -K. Ju, Solid State Electron. 53, 266 (2009)   DOI
16 J. -W. Han, J. -Y. Chun, C. -H. Ok, and D. -S. Seo, Jpn. J. Appl. Phys. 48, 010205 (2009)   DOI
17 Y. Zhang, J. R. Petta, S. Ambily, Y. Shen, D. C. Ralph, and G. G. Milliaras, Adv. Mater. 15, 1632 (2003)   DOI
18 C. -C. Kuo and T. N. Jackson, Appl. Phys. Lett. 94, 053304 (2009).   DOI   ScienceOn
19 C. Balocco, L. A. Majewski, and A. M. Song, Org. Electron. 7, 500 (2006).   DOI