DOI QR코드

DOI QR Code

Fabrication of Micron-sized Organic Field Effect Transistors

마이크로미터 크기의 유기 전계 효과 트랜지스터 제작

  • Park, Sung-Chan (Department of Chemical and Biological Engineering, Korea University) ;
  • Huh, Jung-Hwan (School of Electrical Engineering, Korea University) ;
  • Kim, Gyu-Tae (School of Electrical Engineering, Korea University) ;
  • Ha, Jeong-Sook (Department of Chemical and Biological Engineering, Korea University)
  • 박성찬 (고려대학교 화공생명공학과) ;
  • 허정환 (고려대학교 전기공학과) ;
  • 김규태 (고려대학교 전기공학과) ;
  • 하정숙 (고려대학교 화공생명공학과)
  • Received : 2010.10.11
  • Accepted : 2010.11.28
  • Published : 2011.01.30

Abstract

In this study, we report on the novel lithographic patterning method to fabricate organic thin film field effect transistors (OTFTs) based on photo and e-beam lithography with well-known silicon technology. The method is applied to fabricate pentacene-based organic field effect transistors. Owing to their solubility, sub-micron sized patterning of P3HT and PEDOT has been well established via micromolding in capillaries and inkjet printing techniques. Since the thermally deposited pentacene cannot be dissolved in solvents, other approach was done to fabricate pentacene FETs with a very short channel length (~30 nm), or in-plane orientation of pentacene molecules by using nanometer-scale periodic groove patterns as an alignment layer for high-performance pentacene devices. Here, we introduce $Al_2O_3$ film grown via atomic layer deposition method onto pentacene as a passivation layer. $Al_2O_3$ passivation layer on OTFTs has some advantages in preventing the penetration of water and oxygen and obtaining the long-term stability of electrical properties. AZ5214 and ma N-2402 were used as a photo and e-beam resist, respectively. A few micrometer sized lithography patterns were transferred by wet and dry etching processes. Finally, we fabricated micron sized pentacene FETs and measured their electrical characteristics.

본 연구에서는 기존 실리콘 반도체 기술 기반의 포토 및 이빔 리소그래피 공정을 통하여 유기 반도체 소자를 패터닝하였다. P3HT나 PEDOT 등의 유기 반도체는 용매에 녹기 때문에 MIMIC (micro-molding in capillaries)이나 inkjet printing 기술을 이용하여 마이크로미터 크기의 소자 제작이 가능하였으나, 펜타신은 용매에 녹지 않기 때문에 매우 복잡한 방법으로 마이크로미터 크기의 소자를 제작하여왔다. 그러나, 본 연구에서는 원자층 증착 방법으로 증착한 산화 알루미늄막을 펜타신의 보호층으로 이용하여 기존의 포토 및 이빔 리소그래피 방법으로 마이크로미터크기의 펜타신 소자를 제작하였으며 그 전기 특성을 확인하였다.

Keywords

References

  1. R. A. Street, W. S. Wong, S. E. Ready, M. L. Chabinyc, A. C. Arias, S. Limb, A. Salleo, and R. Lujan, Mater. Today 9, 32 (2006).
  2. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002). https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  3. S. R. Forrest, Nature 428, 911 (2004). https://doi.org/10.1038/nature02498
  4. A. Blümel, A. Klug, S. Eder, U. Scherf, E. Moderegger, and E. J. W. List, Org. Electron. 8, 389 (2007). https://doi.org/10.1016/j.orgel.2007.01.009
  5. D. A. Serban, P. Greco, S. Melinte, A. Vlad, C. A. Dutu, S. Zacchini, M. C. Iapalucci, F. Biscarini, and M. Cavallini, Small 5, 1117 (2009).
  6. K. S. Kim, Y. H. Kim, J. In. Han, K. N. Choi, S. K. Kwak, D. S. Kim, and K. S. Chung, J. Kor. Vac. Soc. 17, 435 (2008) https://doi.org/10.5757/JKVS.2008.17.5.435
  7. J. -H. Kwon, S. -I. Shin, J. Choi, M. -H. Chung, H. Kang, and B. -K. Ju, Solid State Electron. 53, 266 (2009) https://doi.org/10.1016/j.sse.2008.12.002
  8. J. -W. Han, J. -Y. Chun, C. -H. Ok, and D. -S. Seo, Jpn. J. Appl. Phys. 48, 010205 (2009) https://doi.org/10.1143/JJAP.48.010205
  9. Y. Zhang, J. R. Petta, S. Ambily, Y. Shen, D. C. Ralph, and G. G. Milliaras, Adv. Mater. 15, 1632 (2003) https://doi.org/10.1002/adma.200305158
  10. C. -C. Kuo and T. N. Jackson, Appl. Phys. Lett. 94, 053304 (2009). https://doi.org/10.1063/1.3050110
  11. C. Balocco, L. A. Majewski, and A. M. Song, Org. Electron. 7, 500 (2006). https://doi.org/10.1016/j.orgel.2006.07.009
  12. X. -H. Zhang, B. Domercq, X. Wang, S. Yoo, T. Kondo, Z. L. Wang, and B. Kippelen, Org. Electron. 8, 718 (2007). https://doi.org/10.1016/j.orgel.2007.06.009
  13. J. B. Koo, C. H. Ku, S. C. Lim, S. H. Kim, and J. H. Lee, Appl. Phys. Lett. 90, 133503 (2007). https://doi.org/10.1063/1.2717015
  14. H. Jeon, K. Shin, C. Yang, C. E. Park, and S. -H. K. Park, Appl. Phys. Lett. 93, 163304 (2008). https://doi.org/10.1063/1.3000017
  15. M. Endo, Y. Tani, M. Sasago, and N. Nomur, J. Electrochem. Soc. 136, 2615 (1989). https://doi.org/10.1149/1.2097515
  16. J. Yamamoto, S. -I. Uchino, T. Hattori, T. Yoshimura, and F. Murai, Jpn. J. Appl. Phys. 35, 6511 (1996). https://doi.org/10.1143/JJAP.35.6511
  17. I. Yagi, K. Tsukagoshi, and Y. Aoyagi, Appl. Phys. Lett. 86, 103502 (2005). https://doi.org/10.1063/1.1875749
  18. J. W. Kim, Y. M. Lee, and Y. Park, J. Korean Vac. Soc. 17, 394 (2008). https://doi.org/10.5757/JKVS.2008.17.5.394
  19. A. Papadimitratos, A. Amassian, A. S. Killampalli, J. L. Mack, G. G. Milliaras, and J. R. Engstrom, Appl. Phys. A 95, 29 (2009). https://doi.org/10.1007/s00339-008-5025-x