• Title/Summary/Keyword: Printing characteristics

Search Result 691, Processing Time 0.024 seconds

Gas sensing characteristics of Co3O4 thick films with metal oxides (금속산화물을 첨가한 Co3O4 후막의 가스 감지특성)

  • Jo, Chang-Yong;Park, Ki-Cheol;Kim, Jeong-Gyoo
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.54-62
    • /
    • 2009
  • ${Co_3}{O_4}$ and ${Co_3}{O_4}$-based thick films with additives such as ${Co_3}{O_4}-{Fe_2}{O_3}$(5 wt.%), ${Co_3}{O_4}-{SnO_2}$ (5 wt.%), ${Co_3}{O_4}-{WO_3}$(5 wt.%) and ${Co_3}{O_4}$-ZnO(5 wt.%) were fabricated by screen printing method on alumina substrates. Their structural properties were examined by XRD and SEM. The sensitivities to iso-${C_4}H_{10}$, $CH_4$, CO, $NH_3$ and NO gases were investigated with the thick films heat treated at $400^{\circ}C$, $500^{\circ}C$ and $600^{\circ}C$. From the gas sensing properties of the films, the films showed p-type semiconductor behaviors. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed higher sensitivity to i-${C_4}H_{10}$ and CO gases than other thick-films. ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film heat treated at $600^{\circ}C$ showed the sensitivity of 170 % to 3000 ppm iso-${C_4}H_{10}$ gas and 100 % to 100 ppm CO gas at the working temperature of $250^{\circ}C$. The response time to i-${C_4}H_{10}$ and CO gases showed rise time of about 10 seconds and fall time of about $3{\sim}4$ minutes. The selectivity to i-${C_4}H_{10}$ and CO gases was enhanced in the ${Co_3}{O_4}-{SnO_2}$(5 wt.%) thick film.

A Study on the Trend and Spatial Composition of Public Library by the Mixed (복합화에 의한 공공도서관의 경향과 공간구성에 관한 연구)

  • Jang, Woo-Seok;Son, Kwang-Ho
    • Korean Institute of Interior Design Journal
    • /
    • v.20 no.1
    • /
    • pp.199-207
    • /
    • 2011
  • After the development of printing technology since the 15th century and the rise of citizen consciousness in the 18th century, the library has taken a public concept. And after the 20th century, its role as a public library for the public was stressed, and as its spatial composition became miniaturized and specialized, its function changed from stacking and reading to various kinds including culture and service and is getting more complex beside the function of a library. Thereupon, this study aims to figure out the limitations of public libraries' opening years shown in advanced researches and understand the current status of spatial composition by complexation with the subjects of five public libraries opened after the end of December, 2006 in order to examine their tendencies of complexation and the characteristics of spatial composition by the complexation of public libraries. As a result, the present public libraries have at leaser more than two spaces with complex functions. According to the result of analysis on the types, locational relations between spaces showed the mixed type the most. In the types of building allocation, the building integrated type had a higher percentage than the separated type. About the types of entrance, the one common door type was fewer than the two separate door type. In the analysis on the types of the interior line of flow, the common type was similar to the dispersed type, and it is thought to be resulted from spatial composition rather than the preplanned line of flow.

Characteristics of CuO doped WO3-SnO2 Thick Film Gas Sensors (CuO가 첨가된 WO3-SnO2 후막 가스센서 특성 연구)

  • Lee, Don-Kyu;Shin, Deuck-Jin;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.956-960
    • /
    • 2010
  • CuO doped $WO_3-SnO_2$ thick film gas sensors were fabricated by screen printing method on alumina substrates and heat-treated at $350^{\circ}C$ in air. The effects of mixing ratio of $WO_3$ with $SnO_2$ on the structural and morphological properties of $WO_3-SnO_2$ were investigated X-ray diffraction and Scanning Electron Microscope. The structural properties of the $WO_3-SnO_2$:CuO thick film by XRD showed that the monoclinic of $WO_3$ and the tetragonal of $SnO_2$ phase were mixed. Nano CuO was coated on the $WO_3-SnO_2$ surface and then the surface of $WO_3$ was coated with $SnO_2$ particles with $1\sim1.5{\mu}m$ in diameters, as confirmed form the SEM image. The sensitivity of the $WO_3-SnO_2$:CuO sensor to 2000 ppm $CO_2$ gas and 50 ppm $H_2S$ gas for the various ratio of $WO_3$ and $SnO_2$ was investigated. The 4 wt% CuO doped $WO_3-SnO_2$(75:25) tkick films showed the highest sensitivity to $CO_2$ gas and $H_2S$ gas.

A Study on Spontaneous Ignition Temperature and Activation Energy of Hydroxypropyl Methyl Cellulose (Hydroxypropyl Methyl Cellulose의 자연발화온도와 활성화 에너지에 관한 연구)

  • Lim, Woo-Sub;Choi, Jae-Wook
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.77-83
    • /
    • 2007
  • This study is conducted on spontaneous ignition temperature and activation energy of Hydroxypropyl Methyl Cellulose(HMC) powder. HMC is a kind of cellulose derivative and used as additives for building material, surface coating, printing ink, adhesives, cosmetics and medical supplies. So this material has been widely used as important additive in the chemical industry fields and a mount of production has increased year by year. Therefore, it is very important to find out the thermal ignition characteristics of its danger and the critical ignition temperature. This study was performed by the Spontaneous Ignition Tester(SIT) and so on. Based on the data of the SIT-II, the critical ignition point of HMC is about $186^{\circ}C$ which is slightly lower than normal cellulose.

The Noise Influence Assessment according to the Change of the Offset Type Print Machine's Power (옵셋 인쇄기계 동력규모 변화에 따른 소음 영향 평가)

  • Gu, Jinhoi;Kwon, Myunghee;Lee, Wooseok;Lee, Jaewon;Park, Hyungkyu;Kim, Samsu;Yun, Heekyung;Lee, Kyumok;Jung, Daekwan;Seo, Chungyoul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.682-686
    • /
    • 2014
  • Nowadays, the needs to revise the classification criteria for noise emission facilities have been suggested by the related industries. Because there existed many reasonable factors in the criteria regarding the noise emission facilities. And the noise emission facility classification criterion of the print machine changed from 50 HP to 100 HP in 2013. But the increasement of the noise emission facility classification criterion of the print machine can cause adverse effects like the bigger noise. So, in this paper, we measured the print machine's sound power level according to the changes of the print machine's power to assess the adverse effects. The measurement method applied with KS I ISO 9614-2(1996). The corelation between the sound power level and the power of print machines was analyzed by regression analysis. In this paper, we found that the sound power level of the print machines can increase about 1.3 dB in the condition of that the power of print machine increases from 50 HP to 100 HP. And we found that the sound power level of the print machines can increase about 1.0 dB for a increasement of 1,000 SPH(sheet per hour) of printing speed. The noise emission characteristics of print machine stuied in this paper will be useful to design the noise reduction plan in the future.

Characteristics of metal-loaded TiO2/SnO2 thick film gas sensor for detecting acetonitrile (아세토나이트릴 가스 검지를 위한 센스의 제작 및 특성)

  • Park, Young-Ho;Lee, Chang-Seop
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • This study investigated sensitivity of the gas sensor to chemical weapons with the sensor material doped with catalysts. The nano-sized SnO2 powder mixed with metal oxides (TiO2) was doped with transition metals(Pt, Pd and In). Thick film of nano-sized SnO2 powder with TiO2 was prepared by screen-printing method onto Al2O3 substrates with platinum electrode and chemical precipitation method. The physical and chemical properties of sensor material were investigated by SEM/EDS, XRD and BET analyzers. The measured sensitivity to simulant toxic gas is defined as the percentage of resistance of value equation, [(Ra-Rg)/$Ra\;{\times}100$)], that of the resistance(Ra) of SnO2 film in air and the resistance(Rg) of SnO2 film in acetonitrile gas. The best sensitivity and selectivity of these thick film were shown with 1wt.% Pd and 1wt.% TiO2 for acetonitile gas at the operating temperature of $250^{\circ}C$.

  • PDF

Trend Changes of Domestic Swimwear Design (국내 수영복의 디자인 트렌드 변화)

  • Kang, Sun-A;Cho, Ju-Yeon;Chung, Su-In
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.4
    • /
    • pp.104-113
    • /
    • 2015
  • Sports wear in relation to sports life is being developed in fashion industry with increasing leisure time. However, design development for swimwear including trend analysis is still required. In this research, we analyzed design trends in domestic social and cultural environment, and fashion design elements for the development for swimwear. We collected 9,549 picture images totally through 138 swimwear product catalogues in 1970s to 2014, and 8 web sites. We analyzed formative characteristics such as silhouettes, materials, colors, and textile designs. Because of the shorter cycle of social changes, and various trend, design changes of swimwear are getting diverse. Especially, color and textile design are remarkable. Also, new materials and printing technology make the design of swimming wear more comfortable and fashionable. This research would be a basic research for the design development of swimming wear.

Inorganic Printable Materials for Printed Electronics: TFT and Photovoltaic Application

  • Jeong, Seon-Ho;Lee, Byeong-Seok;Lee, Ji-Yun;Seo, Yeong-Hui;Kim, Ye-Na;More, Priyesh V.;Lee, Jae-Su;Jo, Ye-Jin;Choe, Yeong-Min;Ryu, Byeong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.1.1-1.1
    • /
    • 2011
  • Printed electronics based on the direct writing of solution processable functional materials have been of paramount interest and importance. In this talk, the synthesis of printable inorganic functional materials (conductors and semiconductors) for thin-film transistors (TFTs) and photovoltaic devices, device fabrication based on a printing technique, and specific characteristics of devices are presented. For printable conductor materials, Ag ink is designed to achieve the long-term dispersion stability and good adhesion property on a glass substrate, and Cu ink is sophisticatedly formulated to endow the oxidation stability in air and even aqueous solvent system. The both inks were successfully printed onto either polymer or glass substrate, exhibiting the superior conductivity comparable to that of bulk one. In addition, the organic thin-film transistor based on the printed metal source/drain electrode exhibits the electrical performance comparable to that of a transistor based on a vacuum deposited Au electrode. For printable amorphous oxide semiconductors (AOSs), I introduce the noble ways to resolve the critical problems, a high processing temperature above $400^{\circ}C$ and low mobility of AOSs annealed at a low temperature below $400^{\circ}C$. The dependency of TFT performances on the chemical structure of AOSs is compared and contrasted to clarify which factor should be considered to realize the low temperature annealed, high performance AOSs. For photovoltaic application, CI(G)S nanoparticle ink for solution processable high performance solar cells is presented. By overcoming the critical drawbacks of conventional solution processed CI(G)S absorber layers, the device quality dense CI(G)S layer is obtained, affording 7.3% efficiency CI(G)S photovoltaic device.

  • PDF

CS-PDM Series Resonant High Frequency Inverter for Copy Machine

  • Sugimura, Hisayuki;Eid, Ahmad Mohamad;Hiraki, Eiji;Kim, Sung-Jung;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1066-1071
    • /
    • 2005
  • This paper presents the two lossless auxiliary inductors-assisted voltage source type half bridge (single ended push pull: SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation for wide its output power regulation ranges and load variations under its constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operating principle is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation characteristics-based on the high frequency PDM strategy. The experimental operating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimental ones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliance implemented here is proved from the practical point of view.

  • PDF

Diffraction Efficiency Analysis of Silver Halide Film for Color Holography Recording

  • Park, Sung Chul;Kim, Sang Il;Son, Kwang Chul;Kwon, Soon Chul;Lee, Seung Hyun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.16-27
    • /
    • 2015
  • Holography technology which was developed by Dennis Gabor (1900~1979) in 1948 is a technology to record wave planes of actual 3D objects. It is known as the only technology which can express 3D information most perfectly close to human-friendly. Holography technology is widely used in advertisement, architecture and arts as well as science technology areas. Especially, digital holographic print which is an applied area is greatly used in military map, architecture map and cultural asset restoration by printing and reproducing 3D information. Holography is realized by recording and reproducing the amplitude and phase information on high resolution film using coherent light like laser. Recording materials for digital holographic printer are silver halide, photoresist and photopolymer. Because the materials have different diffraction efficiency according to film characteristics of each manufacturer, appropriate guide lines should be suggested through efficiency analysis of each film. This paper suggests appropriate guide lines through the diffraction efficiency measurement of silver halide which is a holographic printer recording medium. And the objective of this study is to suggest appropriate guide lines through diffraction efficiency analysis of Ultimate 08-C and PFG-03C which are commercially used. The experiment was prepared by self-diffraction efficiency system which measures the strength with the defector by penetrating RGB recording medium and concentrating diffracted beams through collimating lens. The experiment showed Geola's PFG-03C which is a silver halide for full color has price/performance advantage in optical hologram recording, but recording angles and reproduction angles are irregular for digital holographic printer recording. Ultimate's Ultimate08-C for full color shows its diffraction efficiency is relatively stable and high according to recording angles and laser wavelength.